Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel Foxo1-dependent transcriptional programs control Treg cell function

Abstract

Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses1,2,3,4. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function5, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors6,7,8,9,10. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Tregcell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals 300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foxo1 expression and TCR-induced Foxo1 nuclear exclusion in T reg cells.
Figure 2: An essential role for Foxo1 in the control of T reg cell function.
Figure 3: Foxo1-dependent transcriptional programs in T reg cells.
Figure 4: Restoration of Foxo1-deficient T reg cell function in the absence of IFN-γ.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The expression and ChIP-seq data have been deposited in the NCBI GEO database under accession number GSE40657.

References

  1. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008)

    CAS  PubMed  Google Scholar 

  2. Tang, Q. & Bluestone, J. A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature Immunol. 9, 239–244 (2008)

    CAS  Google Scholar 

  3. Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunol. 10, 689–695 (2009)

    CAS  Google Scholar 

  4. Shevach, E. M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009)

    CAS  PubMed  Google Scholar 

  5. Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nature Immunol. 11, 618–627 (2010)

    CAS  Google Scholar 

  9. Harada, Y. et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 207, 1381–1391 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nature Immunol. 10, 176–184 (2009)

    CAS  Google Scholar 

  13. Patterson, S. J. et al. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J. Immunol. 186, 5533–5537 (2011)

    CAS  PubMed  Google Scholar 

  14. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008)

    CAS  PubMed  Google Scholar 

  15. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol. 8, 191–197 (2007)

    CAS  Google Scholar 

  16. Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nature Cell Biol. 12, 665–675 (2010)

    CAS  PubMed  Google Scholar 

  18. Zhang, X. et al. Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J. Biol. Chem. 277, 45276–45284 (2002)

    CAS  PubMed  Google Scholar 

  19. Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gilley, J., Coffer, P. J. & Ham, J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J. Cell Biol. 162, 613–622 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007)

    ADS  CAS  PubMed  Google Scholar 

  22. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007)

    ADS  CAS  PubMed  Google Scholar 

  24. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008)

    ADS  CAS  PubMed  Google Scholar 

  25. Medina, I. et al. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 38, W210–W213 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatton, R. D. et al. A distal conserved sequence element controls Ifng gene expression by T cells and NK cells. Immunity 25, 717–729 (2006)

    CAS  PubMed  Google Scholar 

  27. Crellin, N. K., Garcia, R. V. & Levings, M. K. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109, 2014–2022 (2007)

    CAS  PubMed  Google Scholar 

  28. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nature Med. 17, 673–675 (2011)

    CAS  PubMed  Google Scholar 

  30. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011)

    CAS  PubMed  Google Scholar 

  31. Wan, Y. Y. & Flavell, R. A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl Acad. Sci. USA 102, 5126–5131 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Driegen, S. et al. A generic tool for biotinylation of tagged proteins in transgenic mice. Transgenic Res. 14, 477–482 (2005)

    CAS  PubMed  Google Scholar 

  33. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008)

    PubMed  PubMed Central  Google Scholar 

  35. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Portales-Casamar, E. et al. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 38, D105–D110 (2010)

    CAS  PubMed  Google Scholar 

  38. Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith, A. D., Sumazin, P., Xuan, Z. & Zhang, M. Q. DNA motifs in human and mouse proximal promoters predict tissue-specific expression. Proc. Natl Acad. Sci. USA 103, 6275–6280 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, L. GADEM: a genetic algorithm guided formation of spaced dyads coupled with an EM algorithm for motif discovery. J. Comput. Biol. 16, 317–329 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity between motifs. Genome Biol. 8, R24 (2007)

    PubMed  PubMed Central  Google Scholar 

  42. Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003)

    PubMed  PubMed Central  Google Scholar 

  43. López-Romero, P. Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library. BMC Genomics 12, 64 (2011)

    PubMed  PubMed Central  Google Scholar 

  44. Al-Shahrour, F., Diaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580 (2004)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Flavell for the Foxp3-IRES-RFP mouse strain, K. Rajewsky and C. Xiao for the Rosa26 targeting vector and T. Unterman for the HA-hFoxo1(AAA) construct. This work was supported by the Starr Cancer Consortium (13-A123 to M.O.L., M.Q.Z. and G.A.), the Rita Allen Foundation (M.O.L.), National Bio Resource Project (NBRPC) (2012CB316503 to M.Q.Z.) and National Institutes of Health (HG001696 to M.Q.Z.).

Author information

Authors and Affiliations

Authors

Contributions

W.O., W.L., C.T.L., N.Y., M.H., G.A., M.Q.Z. and M.O.L. designed the research and analysed the data; W.O., W.L., C.T.L., N.Y., M.H., M.V.K., M.P., P.C., Q.M. and Y.M. did the experiments; D.M. and A.Y.R. provided birA and Foxp3cre mouse strains; K.Z. supervised the ChIP-seq experiment; and W.O., W.L. and M.O.L. wrote the manuscript.

Corresponding authors

Correspondence to Michael Q. Zhang or Ming O. Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-14. (PDF 5377 kb)

Supplementary Table 1

This file contains a complete list of candidate binding sites detected in antibody and biotin Foxo1 ChIP-Seq (overlapping peaks have been merged). (XLSX 253 kb)

Supplementary Table 2

This file shows differentially expressed genes in Foxo1-deficient Tregs (1.5X or greater). (XLSX 232 kb)

Supplementary Table 3

This file contains a complete list of candidate binding sites detected in antibody and biotin Foxo1 ChIP-Seq (selecting for peaks nearby genes that are differentially expressed in Foxo1 KO and rescued by Foxo1AAA). (XLSX 91 kb)

Supplementary Table 4

This file shows gene ontology analysis of Foxo1 direct target genes. (XLSX 47 kb)

Foxo1 nuclear exclusion in response to high-dose CD3 antibody

CD4+ cells were isolated from Foxo1tag/tag Foxp3-IRES-RFP mice, and stimulated with plate-bound anti-CD3 (0.1 μg/ml) and anti-CD28 (1.0 μg/ml). GFP, RFP and bright-field images were acquired every 2 min after addition of cells using a fluorescence videomicroscope. (MOV 68 kb)

Foxo1 nuclear exclusion in response to low-dose CD3 antibody

CD4+ cells were isolated from Foxo1tag/tag Foxp3-IRES-RFP mice, and stimulated with plate-bound anti-CD3 (0.01 μg/ml) and anti-CD28 (1.0 μg/ml). GFP, RFP and bright-field images were acquired every 2 min after addition of cells using a fluorescence videomicroscope (MOV 110 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, W., Liao, W., Luo, C. et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 491, 554–559 (2012). https://doi.org/10.1038/nature11581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11581

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing