Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lower satellite-gravimetry estimates of Antarctic sea-level contribution

Abstract

Recent estimates of Antarctica’s present-day rate of ice-mass contribution to changes in sea level range from 31 gigatonnes a year (Gt yr−1; ref. 1) to 246 Gt yr−1 (ref. 2), a range that cannot be reconciled within formal errors3. Time-varying rates of mass loss2,4,5,6 contribute to this, but substantial technique-specific systematic errors also exist3. In particular, estimates of secular ice-mass change derived from Gravity Recovery and Climate Experiment (GRACE) satellite data are dominated by significant uncertainty in the accuracy of models of mass change due to glacial isostatic adjustment7,8 (GIA). Here we adopt a new model of GIA, developed from geological constraints, which produces GIA rates systematically lower than those of previous models, and an improved fit to independent uplift data9. After applying the model to 99 months (from August 2002 to December 2010) of GRACE data, we estimate a continent-wide ice-mass change of −69 ± 18 Gt yr−1 (+0.19 ± 0.05 mm yr−1 sea-level equivalent). This is about a third to a half of the most recently published GRACE estimates2,5, which cover a similar time period but are based on older GIA models. Plausible GIA model uncertainties, and errors relating to removing longitudinal GRACE artefacts (‘destriping’), confine our estimate to the range −126 Gt yr−1 to −29 Gt yr−1 (0.08–0.35 mm yr−1 sea-level equivalent). We resolve 26 independent drainage basins and find that Antarctic mass loss, and its acceleration, is concentrated in basins along the Amundsen Sea coast. Outside this region, we find that West Antarctica is nearly in balance and that East Antarctica is gaining substantial mass.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mass change rates by drainage basin.
Figure 2: Mass change time series and accelerations.

Similar content being viewed by others

References

  1. Zwally, H. & Giovinetto, M. B. Overview and assessment of Antarctic ice-sheet mass balance estimates: 1992–2009. Surv. Geophys. 32, 351–376 (2011)

    Article  ADS  Google Scholar 

  2. Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 36, L19503 (2009)

    Article  ADS  Google Scholar 

  3. Shepherd, A. & Wingham, D. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315, 1529–1532 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011)

    Article  ADS  Google Scholar 

  5. Chen, J. L., Wilson, C. R., Blankenship, D. & Tapley, B. D. Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geosci. 2, 859–862 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Wingham, D. J., Wallis, D. W. & Shepherd, A. Spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006. Geophys. Res. Lett. 36, L17501 (2009)

    Article  ADS  Google Scholar 

  7. Barletta, V. R., Sabadini, R. & Bordoni, A. Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys. J. Int. 172, 18–30 (2008)

    Article  ADS  Google Scholar 

  8. Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Whitehouse, P. L., Bentley, M. J. & Le Brocq, A. M. A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 32, 1–24 (2012)

    Article  ADS  Google Scholar 

  10. Solomon, S., et al., eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007)

  11. Tamisiea, M. E., Mitrovica, J. X., Milne, G. A. & Davis, J. L. Global geoid and sea level changes due to present-day ice mass fluctuations. J. Geophys. Res. 106, 30849–30863 (2001)

    Article  ADS  Google Scholar 

  12. Stammer, D., Agarwal, N., Herrmann, P., Kohl, A. & Mechoso, C. R. Response of a coupled ocean-atmosphere model to Greenland ice melting. Surv. Geophys. 32, 621–642 (2011)

    Article  ADS  Google Scholar 

  13. Bentley, M. J. et al. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: constraints on past ice volume change. Geology 38, 411–414 (2010)

    Article  ADS  Google Scholar 

  14. Thomas, I. D. et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett. 38, L22302 (2011)

    ADS  Google Scholar 

  15. Bevis, M. et al. Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem. Geophys. Geosyst. 10, Q10005 (2009)

    Article  ADS  Google Scholar 

  16. Mackintosh, A. et al. Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geosci. 4, 195–202 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A. & Thomas, I. D. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int. 190, 1464–1482 (2012)

    Article  ADS  Google Scholar 

  18. Ivins, E. R. & James, T. S. Antarctic glacial isostatic adjustment: a new assessment. Antarct. Sci. 17, 541–553 (2005)

    Article  ADS  Google Scholar 

  19. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Tregoning, P., Ramillien, G., McQueen, H. & Zwartz, D. Glacial isostatic adjustment and nonstationary signals observed by GRACE. J. Geophys. Res. 114, B06406 (2009)

    ADS  Google Scholar 

  21. Horwath, M. & Dietrich, R. Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys. J. Int. 177, 849–864 (2009)

    Article  ADS  Google Scholar 

  22. Wouters, B., Chambers, D. & Schrama, E. J. O. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett. 35, L20501 (2008)

    Article  ADS  Google Scholar 

  23. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012)

    Article  ADS  CAS  Google Scholar 

  24. Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106–110 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M. & Hanna, E. Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science 308, 1898–1901 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Gunter, B. et al. A comparison of coincident GRACE and ICESat data over Antarctica. J. Geodesy 83, 1051–1060 (2009)

    Article  ADS  Google Scholar 

  27. Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011)

    Article  ADS  Google Scholar 

  28. Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011)

    Article  ADS  Google Scholar 

  29. Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012)

    Article  ADS  CAS  Google Scholar 

  30. Gladstone, R. M. et al. Calibrated prediction of Pine Island Glacier retreat during the 21st and 22nd centuries with a coupled flowline model. Earth Planet. Sci. Lett. 333–334, 191–199 (2012)

    Article  ADS  Google Scholar 

  31. Cheng, M. K. & Tapley, B. D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 109, B09402 (2004)

    Article  ADS  Google Scholar 

  32. Tamisiea, M. E. Ongoing glacial isostatic contributions to observations of sea level change. Geophys. J. Int. 186, 1036–1044 (2011)

    Article  ADS  Google Scholar 

  33. Swenson, S., Chambers, D. & Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. 113, B08410 (2008)

    Article  ADS  Google Scholar 

  34. Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004)

    Article  ADS  Google Scholar 

  35. Wahr, J., Molenaar, M. & Bryan, F. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 103, 30205–30229 (1998)

    Article  ADS  Google Scholar 

  36. Purcell, A. et al. Relationship between glacial isostatic adjustment and gravity perturbations observed by GRACE. Geophys. Res. Lett. 38, L18305 (2011)

    Article  ADS  Google Scholar 

  37. Swenson, S. & Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 33, L08402 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by NERC, and an RCUK Academic Fellowship to M.A.K., and partially supported by COST Action ES0701. G.A.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs programme. We thank E. Ivins for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.A.K. and G.A.M. conceived the study. M.A.K. oversaw the work and wrote the paper. P.M. did the GRACE processing and R.J.B. did the forward modelling. R.J.B. and M.A.K. did the leakage analysis. P.L.W., M.J.B. and G.A.M. developed the GIA model. All authors commented on the paper.

Corresponding author

Correspondence to Matt A. King.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text 1-5, which includes Supplementary Figures 1-4, Supplementary Tables 1-2 and Supplementary References. (PDF 1007 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, M., Bingham, R., Moore, P. et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature 491, 586–589 (2012). https://doi.org/10.1038/nature11621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11621

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing