Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CaMKII determines mitochondrial stress responses in heart

Abstract

Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signalling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3,4,5 are not known. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in ischaemia reperfusion, myocardial infarction and neurohumoral injury, common causes of myocardial death and heart failure; these findings suggest that CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A, an mPTP antagonist with clinical efficacy in ischaemia reperfusion injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to ischaemia reperfusion injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition have reduced IMCU and are resistant to ischaemia reperfusion injury, myocardial infarction and neurohumoral injury, suggesting that pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry in myocardial cell death, and indicate that mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure in response to common experimental forms of pathophysiological stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolated heart mitochondria with transgenic, membrane-targeted CaMKII inhibition (CaMKIIN) are resistant to Ca 2+ challenge.
Figure 2: CaMKII agonist actions on I MCU require MCU serines 57 and 92.
Figure 3: mtCaMKIIN hearts are resistant to ischaemia reperfusion injury.
Figure 4: mtCaMKIIN hearts are resistant to apoptosis in vivo.

Similar content being viewed by others

References

  1. Kroemer, G. & Reed, J. C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000)

    Article  CAS  Google Scholar 

  2. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007)

    Article  CAS  Google Scholar 

  3. Kirichok, Y., Krapivinsky, G. & Clapham, D. E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011)

    Article  ADS  CAS  Google Scholar 

  5. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011)

    Article  ADS  CAS  Google Scholar 

  6. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008)

    Article  CAS  Google Scholar 

  7. Erickson, J. R. et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133, 462–74 (2008)

    Article  CAS  Google Scholar 

  8. Yang, Y. et al. Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. Am. J. Physiol. Heart Circ. Physiol. 291, H3065–H3075 (2006)

    Article  CAS  Google Scholar 

  9. Zhang, T. et al. The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ. Res. 92, 912–919 (2003)

    Article  CAS  Google Scholar 

  10. Odagiri, K. et al. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. J. Mol. Cell. Cardiol. 46, 989–997 (2009)

    Article  CAS  Google Scholar 

  11. Zhang, R. et al. Calmodulin kinase II inhibition protects against structural heart disease. Nature Med. 11, 409–417 (2005)

    Article  ADS  CAS  Google Scholar 

  12. García-Rivas, G. J., Carvajal, K., Correa, F. & Zazueta, C. Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post-ischaemic functional recovery in rats in vivo. Br. J. Pharmacol. 149, 829–837 (2006)

    Article  Google Scholar 

  13. Singh, M. V. et al. Ca2+/calmodulin-dependent kinase II triggers cell membrane injury by inducing complement factor B gene expression in the mouse heart. J. Clin. Invest. 119, 986–996 (2009)

    Article  CAS  Google Scholar 

  14. Hakem, R. et al. Differential requirement for Caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998)

    Article  CAS  Google Scholar 

  15. Olichon, A. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746 (2003)

    Article  CAS  Google Scholar 

  16. Wang, W. et al. Superoxide flashes in single mitochondria. Cell 134, 279–290 (2008)

    Article  CAS  Google Scholar 

  17. Halestrap, A. P. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol. 46, 821–831 (2009)

    Article  CAS  Google Scholar 

  18. Timmins, J. M. et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J. Clin. Invest. 119, 2925–2941 (2009)

    Article  CAS  Google Scholar 

  19. Sharma, V., Abraham, T., So, A., Allard, M. & McNeill, J. Functional effects of protein kinases and peroxynitrite on cardiac carnitine palmitoyltransferase-1 in isolated mitochondria. Mol. Cell. Biochem. 337, 223–237 (2010)

    Article  CAS  Google Scholar 

  20. Anderson, M. E., Brown, J. H. & Bers, D. M. CaMKII in myocardial hypertrophy and heart failure. J. Mol. Cell. Cardiol. 51, 468–473 (2011)

    Article  CAS  Google Scholar 

  21. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Saotome, M. et al. Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 288, H1820–H1828 (2005)

    Article  CAS  Google Scholar 

  23. Fong, Y. L., Taylor, W. L., Means, A. R. & Soderling, T. R. Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate. J. Biol. Chem. 264, 16759–16763 (1989)

    CAS  PubMed  Google Scholar 

  24. Hanson, P. I., Meyer, T., Stryer, L. & Schulman, H. Dual role of calmodulin in autophosphorylation of multifunctional cam kinase may underlie decoding of calcium signals. Neuron 12, 943–956 (1994)

    Article  CAS  Google Scholar 

  25. Koval, O. M. et al. CaV1.2 b-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proc. Natl Acad. Sci. USA 107, 4996–5000 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Wehrens, X. H. T., Lehnart, S. E., Reiken, S. R. & Marks, A. R. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res. 94, e61–e70 (2004)

    Article  CAS  Google Scholar 

  27. Feldman, D. S., Carnes, C. A., Abraham, W. T. & Bristow, M. R. Mechanisms of disease: β-adrenergic receptors—alterations in signal transduction and pharmacogenomics in heart failure. Nature Clin. Pract. Cardiovasc. Med. 2, 475–483 (2005)

    Article  CAS  Google Scholar 

  28. Wu, Y., Colbran, R. J. & Anderson, M. E. Calmodulin kinase is a molecular switch for cardiac excitation-contraction coupling. Proc. Natl Acad. Sci. USA 98, 2877–2881 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Li, J. et al. Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current. Channels 1, 387–394 (2007)

    Article  Google Scholar 

  30. He, B. J. et al. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nature Med. 17, 1610–1618 (2011)

    Article  CAS  Google Scholar 

  31. Herlein, J. A., Fink, B. D., O'Malley, Y. & Sivitz, W. I. Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats. Endocrinology 150, 46–55 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge discussions with A. Lee, B. Davidson, K. Campbell and C. Sigmund. This work was funded by: AHA 0635357N (M.A.J.); (NIH R01 HL090905 (L.-S.S.); NIH R01 HL079031, R01 HL62494, R01 HL70250 and R01 HL113001 and supported by a grant from the Fondation Leducq for the Alliance for CaMKII Signaling (M.E.A.); NIH R01 HL084583, R01 HL083422 and Pew Scholars Trust (P.J.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.J. designed the project, carried out experimental work and wrote the manuscript. O.M.K. and L.-S.S. carried out experimental work, analysed data and participated in data interpretation. C.A., Z.G. and E.D.L., carried out experimental work and interpreted data. J.L., B.J.H., D.D.H., B.D.F., B.C. and J.Y. carried out experimental work. S.S. provided critical materials and wrote the manuscript. S.A.M. and T.D.S. interpreted data. P.J.M. supervised the research. W.I.S. supervised the research and wrote the manuscript. M.E.A. conceived the project, supervised the research and wrote the manuscript.

Corresponding authors

Correspondence to Mei-ling A. Joiner or Mark E. Anderson.

Ethics declarations

Competing interests

M.E.A. is a named inventor on patents claiming to treat heart disease by CaMKII inhibition. He is a founder and advisor to Allosteros Therapeutics. At present no income derives from these activities.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-9. (PDF 2575 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joiner, Ml., Koval, O., Li, J. et al. CaMKII determines mitochondrial stress responses in heart. Nature 491, 269–273 (2012). https://doi.org/10.1038/nature11444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11444

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing