Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamical similarity of geomagnetic field reversals

Abstract

No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components1,2,3. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paths of VGPs.
Figure 2: Dynamical characteristics of the reversal records.
Figure 3: Secular variation in presence of low axial dipole.
Figure 4: Reversal timing and eruption rates.

Similar content being viewed by others

References

  1. Dagley, P. &. Lawley, E. Paleomagnetic evidence for the transitional behavior of the geomagnetic field. Geophys. J. R. Astron. Soc. 36, 577–598 (1974)

    Article  ADS  Google Scholar 

  2. Jacobs, J. A. Reversals of the Earth’s Magnetic Field 2nd edn (Cambridge Univ. Press, 1994)

    Book  Google Scholar 

  3. Amit, H., Leonhardt, R. & Wicht, J. Polarity reversals from paleomagnetic observations and numerical dynamos simulations. Space Sci. Rev. 155, 293–335 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Brown, M. C., Holme, R. & Bargery, A. Exploring the influence of the non-dipole field on magnetic records for field reversals and excursions. Geophys. J. Int. 168, 541–550 (2007)

    Article  ADS  Google Scholar 

  5. Valet, J. P. & Plenier, G. Simulations of a time-varying non-dipole field during geomagnetic reversals and excursions. Phys. Earth Planet. Inter. 169, 178–193 (2008)

    Article  ADS  Google Scholar 

  6. Hagstrum, J. T. & Champion, D. E. Late Quaternary geomagnetic secular variation from historical and 14C-dated lava flows on Hawaii. J. Geophys. Res. 100, 24393–24403 (1995)

    Article  ADS  Google Scholar 

  7. Korte, M., Constable, C., Donadini, F. & Holme, R. Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett. 312, 497–505 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Jarboe, N. A., Coe, R. S. & Glen, J. M. G. Evidence from lava flows for complex polarity transitions: the new composite Steens Mountain reversal record. Geophys. J. Int. 186, 580–602 (2011)

    Article  ADS  Google Scholar 

  9. Hulot, G. & Le Mouël, J.-L. A statistical approach to the Earth’s main magnetic field. Phys. Earth Planet. Inter. 82, 167–183 (1994)

    Article  ADS  Google Scholar 

  10. Lhuillier, F., Fournier, A., Hulot, G. & Aubert, J. The geomagnetic secular-variation timescale in observations and numerical dynamo models. Geophys. Res. Lett. 38, L09306 (2011)

    Article  ADS  Google Scholar 

  11. Singer, B. S. et al. Structural and temporal requirements for geomagnetic reversal deduced from lava flows. Nature 434, 633–636 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Kent, D. V. & Schneider, D. A. Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval. Earth Planet. Sci. Lett. 129, 135–144 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Hartl, P. & Tauxe, L. A precursor to the Matuyama-Brunhes transition-field instability as recorded in pelagic sediments. Earth Planet. Sci. Lett. 138, 121–135 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Narteau, C., Le Mouël, J.-L. & Valet, J.-P. The oscillatory nature of the geomagnetic field during reversals. Earth Planet. Sci. Lett. 262, 66–76 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Pétrélis, F., Fauve, S., Dormy, E. & Valet, J. P. Simple mechanism for reversals of Earth’s magnetic field. Phys. Rev. Lett. 102, 144503 (2009)

    Article  ADS  Google Scholar 

  16. Clement, B. M. Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature 428, 637–640 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Langereis, C. G., van Hoof, A. A. M. & Rochette, P. Longitudinal confinement of geomagnetic reversal paths as a possible sedimentary artefact. Nature 358, 226–230 (1992)

    Article  ADS  Google Scholar 

  18. Channell, J. E. T., Curtis, J. H. & Flower, B. P. The Matuyama-Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments. Geophys. J. Int. 158, 489–505 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Prévot, M., Mankinen, E. A., Coe, R. S. & Grommé, C. S. The Steens Mountain (Oregon) geomagnetic polarity transition. 2. Field intensity variations and discussion of reversal models. J. Geophys. Res. 90, 10,417–10,448 (1985)

    Article  ADS  Google Scholar 

  20. Herrero-Bervera, E. & Valet, J.-P. Absolute paleointensity and reversal records from the Waianae sequence (Oahu, Hawaii, USA). Earth Planet. Sci. Lett. 234, 279–296 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Richards, M., Duncan, R. & Courtillot, V. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989)

    Article  ADS  CAS  Google Scholar 

  22. Olson, P. L., Glatzmaier, G. A. & Coe, R. S. Complex polarity reversals in a geodynamo model. Earth Planet. Sci. Lett. 304, 168–179 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Herrero-Bervera, E. & Valet, J.-P. Paleosecular variation during sequential geomagnetic reversals from Hawaii. Earth Planet. Sci. Lett. 171, 139–148 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Herrero-Bervera, E., Walker, G. P. L., Harrison, C. G. A., Guerrero Garcia, J. & Kristjansson, L. Detailed paleomagnetic study of two volcanic polarity transitions recorded in eastern Iceland. Phys. Earth Planet. Inter. 115, 119–135 (1999)

    Article  ADS  Google Scholar 

  25. Coe, R. S., Singer, B., Pringle, M. S. & Zhao, X. Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40Ar/39Ar ages and implications. Earth Planet. Sci. Lett. 222, 667–684 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Mochizuki, N., Oda, H., Ishizuka, O., Yamazaki, T. & Tsunakawa, H. Paleointensity variation across the Matuyama-Brunhes polarity transition: Observations from lavas at Punaruu Valley, Tahiti. J. Geophys. Res. 116, B06103 (2011)

    Article  ADS  Google Scholar 

  27. Moulin, M., Courtillot, V., Fluteau, F. & Valet, J. P. The “van Zijl” Jurassic geomagnetic reversal revisited. Geochem. Geophys. Geosyst. 13, Q03010 (2012)

    Article  ADS  Google Scholar 

  28. Chauvin, A., Roperch, P. & Duncan, R. A. Records of geomagnetic reversals from volcanic islands of French Polynesia. 2. Paleomagnetic study of a flow sequence (1.2–0.6 Ma) from the Island of Tahiti and discussion of reversal models. J. Geophys. Res. 95, 2727–2752 (1990)

    Article  ADS  Google Scholar 

  29. Riisager, J., Riisager, P. & Ken Pedersen, A. The C27n-C26r geomagnetic polarity reversal recorded in the west Greenland flood basalt province: how complex is the transitional field? J. Geophys. Res. 108, 2155 (2003)

    Article  ADS  Google Scholar 

  30. Aubert, J., Labrosse, S. & Poitou, C. Modelling the palaeo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009)

    Article  ADS  Google Scholar 

  31. Heunemann, C., Krasa, D., Soffel, H., Gurevitch, E. & Bachtadse, V. Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Siberian trap basalts, Russia. Earth Planet. Sci. Lett. 218, 197–213 (2004)

    Article  ADS  CAS  Google Scholar 

  32. Leonhardt, R., Matzka, J., Hufenbecher, F. & Soffel, H. C. A reversal of the Earth’s magnetic field recorded in mid-Miocene lava flows of Gran Canaria: paleodirections. J. Geophys. Res. 107, 2024 (2002)

    ADS  Google Scholar 

  33. Hoffman, K. A. & Singer, B. S. Magnetic source separation in Earth’s outer core. Science 321, 1800 (2008)

    Article  ADS  CAS  Google Scholar 

  34. Bloxham, J. & Jackson, A. Time-dependent mapping of the magnetic field at the core-mantle boundary. J. Geophys. Res. 97, 19537–19563 (1992)

    Article  ADS  Google Scholar 

  35. Roberts, P. H. & Scott, S. On the analysis of the secular variation. 1. A hydromagnetic constraint: theory. J. Geomag. Geoelectr. 17, 137–151 (1965)

    Article  ADS  Google Scholar 

  36. Jackson, A. & Finlay, C. C. in Geomagnetism (ed. Kono, M.) 147–193 (Treatise on Geophysics 5, Elsevier, 2007)

    Book  Google Scholar 

  37. Christensen, U. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006)

    Article  ADS  Google Scholar 

  38. Nimmo, F. in Core Dynamics (ed. Olson, P. ) 31–65 (Treatise on Geophysics 8, Elsevier, 2007)

    Google Scholar 

Download references

Acknowledgements

We are grateful to J. Dyon for significantly improving the quality of the figures and to J. Channell for providing us with his reversal data. This is IPGP contribution number 3313 and HIGP contribution number 1987.

Author information

Authors and Affiliations

Authors

Contributions

J.-P.V. initiated the study, performed reversal data treatment and wrote the manuscript. A.F. contributed to all stages of the study by developing the link with theoretical modelling, performing the calculations derived from the CALS10k.1b model, writing and editing. V.C. edited the manuscript and influenced its content via discussions. E.H.-B. acquired a large part of the data and critically read the paper.

Corresponding author

Correspondence to Jean-Pierre Valet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-3. (PDF 286 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valet, JP., Fournier, A., Courtillot, V. et al. Dynamical similarity of geomagnetic field reversals. Nature 490, 89–93 (2012). https://doi.org/10.1038/nature11491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11491

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing