Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RPN-6 determines C. elegans longevity under proteotoxic stress conditions

Abstract

Organisms that protect their germ-cell lineages from damage often do so at considerable cost: limited metabolic resources become partitioned away from maintenance of the soma, leaving the ageing somatic tissues to navigate survival amid an environment containing damaged and poorly functioning proteins. Historically, experimental paradigms that limit reproductive investment result in lifespan extension. We proposed that germline-deficient animals might exhibit heightened protection from proteotoxic stressors in somatic tissues. We find that the forced re-investment of resources from the germ line to the soma in Caenorhabditis elegans results in elevated somatic proteasome activity, clearance of damaged proteins and increased longevity. This activity is associated with increased expression of rpn-6, a subunit of the 19S proteasome, by the FOXO transcription factor DAF-16. Ectopic expression of rpn-6 is sufficient to confer proteotoxic stress resistance and extend lifespan, indicating that rpn-6 is a candidate to correct deficiencies in age-related protein homeostasis disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Germline-lacking nematodes have increased proteasome activity.
Figure 2: DAF-16 is required for proteasome activity in glp-1(e2141) mutant nematodes.
Figure 3: DAF-16 is necessary for increased expression of rpn-6.1 in glp-1 mutants.
Figure 4: rpn-6.1 is a determinant of stress resistance and viability.
Figure 5: rpn-6.1 protects from polyglutamine aggregation.

Similar content being viewed by others

References

  1. Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304 (1977)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kenyon, C. A pathway that links reproductive status to lifespan in Caenorhabditis elegans . Ann. NY Acad. Sci. 1204, 156–162 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Partridge, L., Gems, D. & Withers, D. J. Sex and death: what is the connection? Cell 120, 461–472 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Shanley, D. P. & Kirkwood, T. B. Calorie restriction and aging: a life-history analysis. Evolution 54, 740–750 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans . Science 295, 502–505 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans . Nature 399, 362–366 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wang, M. C., O’Rourke, E. J. & Ruvkun, G. Fat metabolism links germline stem cells and longevity in C. elegans . Science 322, 957–960 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genet. 28, 139–145 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Berman, J. R. & Kenyon, C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124, 1055–1068 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1, 841–851 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bennett, E. J., Bence, N. F., Jayakumar, R. & Kopito, R. R. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351–365 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 95, 13091–13096 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Hamer, G., Matilainen, O. & Holmberg, C. I. A photoconvertible reporter of the ubiquitin-proteasome system in vivo . Nature Methods 7, 473–478 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell, D. H., Stiles, J. W., Santelli, J. & Sanadi, D. R. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J. Gerontol. 34, 28–36 (1979)

    Article  CAS  PubMed  Google Scholar 

  18. Priess, J. R., Schnabel, H. & Schnabel, R. The glp-1 locus and cellular interactions in early C. elegans embryos. Cell 51, 601–611 (1987)

    Article  CAS  PubMed  Google Scholar 

  19. Dillin, A., Crawford, D. K. & Kenyon, C. Timing requirements for insulin/IGF-1 signaling in C. elegans . Science 298, 830–834 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Hansen, M., Hsu, A. L., Dillin, A. & Kenyon, C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet. 1, e17 (2005)

    Article  PubMed Central  Google Scholar 

  21. Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hsu, A. L., Murphy, C. T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Alam, J. et al. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 274, 26071–26078 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. An, J. H. & Blackwell, T. K. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 17, 1882–1893 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goudeau, J. et al. Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans . PLoS Biol. 9, e1000599 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kisselev, A. F. & Goldberg, A. L. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol. 398, 364–378 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Köhler, A. et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001)

    Article  ADS  PubMed  Google Scholar 

  29. Pathare, G. R. et al. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc. Natl Acad. Sci. USA 109, 149–154 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Santamaria, P. G., Finley, D., Ballesta, J. P. & Remacha, M. Rpn6p, a proteasome subunit from Saccharomyces cerevisiae, is essential for the assembly and activity of the 26 S proteasome. J. Biol. Chem. 278, 6687–6695 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Celniker, S. E. et al. Unlocking the secrets of the genome. Nature 459, 927–930 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghazi, A., Henis-Korenblit, S. & Kenyon, C. Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc. Natl Acad. Sci. USA 104, 5947–5952 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, X. J. &. L. i. S. Proteasomal dysfunction in aging and Huntington disease. Neurobiol. Dis. 43, 4–8 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. Brignull, H. R., Moore, F. E., Tang, S. J. & Morimoto, R. I. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J. Neurosci. 26, 7597–7606 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans . Science 301, 1387–1391 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Morley, J. F. & Morimoto, R. I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans . PLoS Genet. 4, e24 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lapierre, L. R., Melendez, A. & Hansen, M. Autophagy links lipid metabolism to longevity in C. elegans . Autophagy 8, 144–146 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zabel, C. et al. Proteasome and oxidative phoshorylation changes may explain why aging is a risk factor for neurodegenerative disorders. J. Proteomics 73, 2230–2238 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Brenner, S. The genetics of Caenorhabditis elegans . Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 391, 806–811 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Chai, Y., Shao, J., Miller, V. M., Williams, A. & Paulson, H. L. Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis. Proc. Natl Acad. Sci. USA 99, 9310–9315 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vazquez-Manrique, R. P. et al. Reduction of Caenorhabditis elegans frataxin increases sensitivity to oxidative stress, reduces lifespan, and causes lethality in a mitochondrial complex II mutant. FASEB J. 20, 172–174 (2006)

    Article  CAS  PubMed  Google Scholar 

  46. Wolff, S. et al. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124, 1039–1053 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J. & Vanfleteren, J. R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans . BMC Mol. Biol. 9, 9 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Panowski for help with the generation of transgenic strains. We thank D. Joyce for proteasome activity assays and S. Wolff for comments on the manuscript. This work was supported by HHMI and the NIA. D.V. was a recipient of the F.M. Kirby, Inc. Foundation Postdoctoral Scholar Award and Beatriu de Pinós (AGAUR) fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.V. and A.D. planned and supervised the project. D.V. performed the experiments, data analysis and interpretation. I.M. performed biochemistry experiments and contributed to other assays. Z.L. performed UPS reporter experiment, lifespans and injections. P.M.D. performed the filter trap assay. C.M. performed immunoblots. A.P.C.R. and G.M. performed the transcription factor binding site analysis. The manuscript was written by D.V. and A.D. and edited by I.M. and C.M. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andrew Dillin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-22, Supplementary Tables 1-4 and 6-7. (PDF 12476 kb)

Supplementary Data

This file contains Supplementary Table 5. (XLS 26 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilchez, D., Morantte, I., Liu, Z. et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489, 263–268 (2012). https://doi.org/10.1038/nature11315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11315

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing