Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural insights into electron transfer in caa3-type cytochrome oxidase

Abstract

Cytochrome c oxidase is a member of the haem copper oxidase superfamily (HCO)1. HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme’s function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c2,3,4. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36 Å resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain, which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of and cofactor arrangement in caa 3 -oxidase.
Figure 2: Active site, water pool and oxygen channel in caa 3 -oxidase.
Figure 3: Proton pathways in caa 3 -oxidase.
Figure 4: Cytochrome c /cupredoxin complex and electron transfer pathway in caa 3 -oxidase.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors for caa3-oxidase are deposited in the Protein Data Bank (accession code 2YEV).

References

  1. Ferguson-Miller, S. & Babcock, G. T. Heme/copper terminal oxidases. Chem. Rev. 96, 2889–2908 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. Muresanu, L. et al. The electron transfer complex between cytochrome c552 and the CuA domain of the Thermus thermophilus ba3 oxidase. A combined NMR and computational approach. J. Biol. Chem. 281, 14503–14513 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Maneg, O., Ludwig, B. & Malatesta, F. Different interaction modes of two cytochrome-c oxidase soluble CuA fragments with their substrates. J. Biol. Chem. 278, 46734–46740 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Maneg, O., Malatesta, F., Ludwig, B. & Drosou, V. Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios. Biochim. Biophys. Acta 1655, 274–281 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Pereira, M. M., Santana, M. & Teixeira, M. A novel scenario for the evolution of haem-copper oxygen reductases. Biochim. Biophys. Acta 1505, 185–208 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Pereira, M. M., Sousa, F. L., Verissimo, A. F. & Teixeira, M. Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. Biochim. Biophys. Acta 1777, 929–934 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Misquitta, L. V. et al. Membrane protein crystallization in lipidic mesophases with tailored bilayers. Structure 12, 2113–2124 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Caffrey, M., Lyons, J., Smyth, T. & Hart, D. J. in Current Topics in Membranes Vol. 63 (ed. DeLucas, L. J. ) Ch. 4 83–108 (Academic Press, 2009)

    Book  Google Scholar 

  9. Höfer, N., Aragão, D., Lyons, J. A. & Caffrey, M. Membrane protein crystallization in lipidic mesophases. Hosting lipid effects on the crystallization and structure of a transmembrane peptide. Cryst. Growth Des. 11, 1182–1192 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, D., Lee, J. & Caffrey, M. Crystallizing membrane proteins in lipidic mesophases. A host lipid screen. Cryst. Growth Des. 11, 530–537 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  12. Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, 29–51 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. Fee, J. A., Choc, M. G., Findling, K. L., Lorence, R. & Yoshida, T. Properties of a copper-containing cytochrome c1aa3 complex: a terminal oxidase of the extreme thermophile Thermus thermophilus HB8. Proc. Natl Acad. Sci. USA 77, 147–151 (1980)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  15. Steffens, G. C., Biewald, R. & Buse, G. Cytochrome c oxidase is a three-copper, two-heme-A protein. Eur. J. Biochem. 164, 295–300 (1987)

    Article  CAS  PubMed  Google Scholar 

  16. Mather, M. W., Springer, P., Hensel, S., Buse, G. & Fee, J. A. Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3 . J. Biol. Chem. 268, 5395–5408 (1993)

    CAS  PubMed  Google Scholar 

  17. Mather, M. W., Springer, P. & Fee, J. A. Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence and analysis of the deduced primary structure of subunit IIc of cytochrome caa3 . J. Biol. Chem. 266, 5025–5035 (1991)

    CAS  PubMed  Google Scholar 

  18. Lübben, M. & Morand, K. Novel prenylated hemes as cofactors of cytochrome oxidases. Archaea have modified hemes A and O. J. Biol. Chem. 269, 21473–21479 (1994)

    PubMed  Google Scholar 

  19. Backgren, C., Hummer, G., Wikstrom, M. & Puustinen, A. Proton translocation by cytochrome c oxidase can take place without the conserved glutamic acid in subunit I. Biochemistry 39, 7863–7867 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Pereira, M. M., Sousa, F. L., Teixeira, M., Nyquist, R. M. & Heberle, J. A tyrosine residue deprotonates during oxygen reduction by the caa3 reductase from Rhodothermus marinus. FEBS Lett. 580, 1350–1354 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Soares, C. M., Baptista, A. M., Pereira, M. M. & Teixeira, M. Investigation of protonatable residues in Rhodothermus marinus caa3 haem-copper oxygen reductase: comparison with Paracoccus denitrificans aa3 haem-copper oxygen reductase. J. Biol. Inorg. Chem. 9, 124–134 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Santana, M., Pereira, M. M., Elias, N. P., Soares, C. M. & Teixeira, M. Gene cluster of Rhodothermus marinus high-potential iron-sulfur protein: oxygen oxidoreductase, a caa(3)-type oxidase belonging to the superfamily of heme-copper oxidases. J. Bacteriol. 183, 687–699 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Srinivasan, V. et al. Structure at 1.3 Å resolution of Rhodothermus marinus caa3 cytochrome c domain. J. Mol. Biol. 345, 1047–1057 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. Wienk, H. et al. Interaction of cytochrome c with cytochrome c oxidase: an NMR study on two soluble fragments derived from Paracoccus denitrificans. Biochemistry 42, 6005–6012 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Roberts, V. A. & Pique, M. E. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. J. Biol. Chem. 274, 38051–38060 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. Lange, C. & Hunte, C. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc. Natl Acad. Sci. USA 99, 2800–2805 (2002)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  27. Page, C. C., Moser, C. C. & Dutton, P. L. Mechanism for electron transfer within and between proteins. Curr. Opin. Chem. Biol. 7, 551–556 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Drosou, V., Malatesta, F. & Ludwig, B. Mutations in the docking site for cytochrome c on the Paracoccus heme aa3 oxidase. Electron entry and kinetic phases of the reaction. Eur. J. Biochem. 269, 2980–2988 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. Drosou, V., Reincke, B., Schneider, M. & Ludwig, B. Specificity of the interaction between the Paracoccus denitrificans oxidase and its substrate cytochrome c: comparing the mitochondrial to the homologous bacterial cytochrome c552, and its truncated and site-directed mutants. Biochemistry 41, 10629–10634 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Witt, H., Malatesta, F., Nicoletti, F., Brunori, M. & Ludwig, B. Tryptophan 121 of subunit II is the electron entry site to cytochrome-c oxidase in Paracoccus denitrificans. Involvement of a hydrophobic patch in the docking reaction. J. Biol. Chem. 273, 5132–5136 (1998)

    Article  CAS  PubMed  Google Scholar 

  31. Lomize, A. L., Pogozheva, I. D., Lomize, M. A. & Mosberg, H. I. Positioning of proteins in membranes: a computational approach. Protein Sci. 15, 1318–1333 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buse, G., Soulimane, T., Dewor, M., Meyer, H. E. & Bluggel, M. Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase. Protein Sci. 8, 985–990 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soulimane, T., Kiefersauer, R. & Than, M. E. in Membrane Protein Purification and Crystallization (Second Edition) (eds Hunte, C., von Jagow, G. & Schägger, H. ) Ch. 14 229–251 (Academic Press, 2003)

    Book  Google Scholar 

  34. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4, 706–731 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y. F. & Caffrey, M. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr. D 60, 1795–1807 (2004)

    Article  PubMed  Google Scholar 

  36. Soulimane, T., Than, M. E., Dewor, M., Huber, R. & Buse, G. Primary structure of a novel subunit in ba3-cytochrome oxidase from Thermus thermophilus. Protein Sci. 9, 2068–2073 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fischetti, R. F. et al. Mini-beam collimator enables microcrystallography experiments on standard beamlines. J. Synchrotron Radiat. 16, 217–225 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cherezov, V. et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 micron size X-ray synchrotron beam. J. R. Soc. Interface 6, S587–S597 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Cryst. 43, 186–190 (2010)

    Article  CAS  Google Scholar 

  40. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  PubMed  Google Scholar 

  42. Collaborative Computational Project, number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  43. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  44. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  PubMed  Google Scholar 

  45. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  47. Bashford, D. & Gerwert, K. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J. Mol. Biol. 224, 473–486 (1992)

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, L. & Hermans, J. Hydrophilicity of cavities in proteins. Proteins 24, 433–438 (1996)

    Article  CAS  PubMed  Google Scholar 

  49. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. MacKerell, A. D. et al. All atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  PubMed  Google Scholar 

  51. MacKerell, A. D., Feig, M. & Brooks, C. L. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004)

    Article  CAS  PubMed  Google Scholar 

  52. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

  55. Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D 60, 2256–2268 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)

    Article  PubMed  Google Scholar 

  58. Bond, C. S. & Schuttelkopf, A. W. ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallogr. D 65, 510–512 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Science Foundation Ireland Grants 07/IN.1/B1836 (M.C.) and BICF685 (T.S.), the National Institutes of Health Grants GM75915, P50GM073210, U54GM094599 (M.C.), and FP7 COST CM0902 (M.C.) and Marie Curie Actions PIEF-GA-2009-235612 (D.A.). We thank D. Hart, J. Lee and T. Smyth for help with 7.7 MAG synthesis, M. Dewor for amino acid sequencing, C. Soares for discussions regarding surface potential calculations, and G. Winter for help with data reduction from multiple crystals. The assistance and support of beamline scientists at the Advanced Photon Source (23-ID), Diamond Light Source (I24) and Swiss Light Source (PX1) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.A.L. synthesized 7.7 MAG, optimized crystallization conditions, collected and processed data, solved, refined and analysed the structure, and wrote the manuscript. D.A. collected crystals, collected and processed data, solved, refined and analysed the structure, and wrote the manuscript. O.S. performed initial protein production, purification, crystallization and data collection. A.V.P. carried out molecular dynamics simulations and pKa calculations. T.S. initiated the project, produced, purified and characterized protein, helped with crystallization, data collection and processing and structure analysis, and wrote the manuscript. M.C. was responsible for the overall project strategy and management and oversaw manuscript preparation.

Corresponding authors

Correspondence to Tewfik Soulimane or Martin Caffrey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-15, Supplementary Tables 1-3 and Supplementary references. (PDF 2701 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, J., Aragão, D., Slattery, O. et al. Structural insights into electron transfer in caa3-type cytochrome oxidase. Nature 487, 514–518 (2012). https://doi.org/10.1038/nature11182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11182

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing