Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial

Abstract

Electron–electron interactions can render an otherwise conducting material insulating1, with the insulator–metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator–metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field2,3,4,5,6,7. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340 K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator–metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport9. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics10,11. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-field THz characterization of 75-nm VO2 thin film on sapphire with and without metamaterials.
Figure 2: Full-wave simulations of the electric field enhancement in the SRR and nonlinear THz transmission experiment.
Figure 3: THz pump–probe measurement and model calculation.
Figure 4: THz-field-induced damage as revealed by optical and scanning electron micrographs.

Similar content being viewed by others

References

  1. Morin, F. J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34–36 (1959)

    Article  ADS  CAS  Google Scholar 

  2. Limelette, P. et al. Universality and critical behavior at the Mott transition. Science 302, 89–92 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Cao, J. et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nature Nanotechnol. 4, 732–737 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Liu, M. K. et al. Photoinduced phase transitions by time resolved far-infrared spectroscopy in V2O3 . Phys. Rev. Lett. 107, 066403 (2011)

    Article  ADS  CAS  Google Scholar 

  7. Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Berglund, C. N. & Guggenheim, H. J. Electronic properties of VO2 near the semiconductor-metal transition. Phys. Rev. 185, 1022–1033 (1969)

    Article  ADS  CAS  Google Scholar 

  9. Stefanovich, G., Pergament, A. & Stefanovich, D. Electrical switching and Mott transition in VO2. J. Phys. Condens. Matter 12, 8837–8845 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Merbold, H., Bitzer, A. & Feurer, T. Second harmonic generation based on strong field enhancement in nanostructured THz materials. Opt. Express 19, 7262–7273 (2011)

    Article  ADS  CAS  Google Scholar 

  11. Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Kübler, C. et al. Coherent structural dynamics and electronics correlations during an ultrafast insulator-to-metal phase transition in VO2 . Phys. Rev. Lett. 99, 116401 (2007)

    Article  ADS  Google Scholar 

  13. Hilton, D. J. et al. Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys. Rev. Lett. 99, 226401 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Kim, H.-T. et al. Mechanism and observation of Mott transition in VO2-based two- and three- terminal devices. N. J. Phys. 6, 52 (2004)

    Article  Google Scholar 

  15. Hoffmann, M. C., Hebling, J., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. J. Opt. Soc. Am. B 26, A29–A34 (2009)

    Article  CAS  Google Scholar 

  16. Yeh, K.-L., Hoffmann, M. C., Hebling, J. & Nelson, K. A. Generation of 10 µJ ultrashort THz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007)

    Article  ADS  Google Scholar 

  17. Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 . Appl. Phys. Lett. 98, 091106 (2011)

    Article  ADS  Google Scholar 

  18. Hoffmann, M. C., Hebling, J., Hwang, H. Y., Yeh K.-L & Nelson K. A Impact ionization in InSb proved by terahertz pump-terahertz probe spectroscopy. Phys. Rev. B 79, 161201 (2009)

    Article  ADS  Google Scholar 

  19. West, K. G. et al. Growth and characterization of vanadium dioxide thin films prepared by reactive-based target ion beam deposition. J. Vac. Sci. Technol. A 26, 133–139 (2008)

    Article  CAS  Google Scholar 

  20. Werley, C. A. et al. Time-resolved imaging of near fields in THz antennas and direct quantitative measurement of field enhancements. Opt. Express 20, 8551–8567 (2012)

    Article  ADS  Google Scholar 

  21. Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Seo, M. A. et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nature Photon. 3,152–156 (2009)

    Article  ADS  CAS  Google Scholar 

  23. Shalaby, M. et al. Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays. Appl. Phys. Lett. 99, 041110 (2011)

    Article  ADS  Google Scholar 

  24. Simmons, J. G. Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems. Phys. Rev. 155, 657–660 (1967)

    Article  ADS  CAS  Google Scholar 

  25. Yeargan, J. R. & Taylor, H. L. The Poole-Frenkel effect with compensation present. J. Appl. Phys. 39, 5600–5604 (1968)

    Article  ADS  CAS  Google Scholar 

  26. Pergament, A., Boriskov, P. P., Velichko, A. A. & Kuldin, N. A. Switching effect and the metal-insulator transition in electric field. J. Phys. Chem. Solids 71, 874–879 (2010)

    Article  ADS  CAS  Google Scholar 

  27. Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B 51, 11433–11445 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Pashkin, A. et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B 83, 195120 (2011)

    Article  ADS  Google Scholar 

  29. Basov, D. N. et al. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011)

    Article  ADS  CAS  Google Scholar 

  30. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from DOE-BES under grant DE-FG02-09ER46643 and from ONR grant N00014-09-1-1103.

Author information

Authors and Affiliations

Authors

Contributions

R.D.A., K.A.N, M.L. and H.Y.H. came up with the experimental idea. H.Y.H. and M.L. performed the experiments. H.T., K.F., M.L., F.G.O. and X.Z. fabricated the metamaterial structures. A.J.S., M.L. and H.Y.H. performed full-wave electromagnetic simulation and analysed the data. K.G.W., S.K., J.L. and S.A.W. prepared the VO2 thin films. A.C.S. and G.R.K. assisted with the simulation. M.L., H.Y.H., R.D.A. and K.A.N. wrote the manuscript. All authors contributed to the understanding of the underlying physics.

Corresponding authors

Correspondence to Keith A. Nelson or Richard D. Averitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Supplementary Table 1, Supplementary Figures 1-2 and additional references. (PDF 424 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Hwang, H., Tao, H. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012). https://doi.org/10.1038/nature11231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11231

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing