Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A filament of dark matter between two clusters of galaxies

Abstract

It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments1. The thread-like structure of this ‘cosmic web’ has been traced by galaxy redshift surveys for decades2,3. More recently, the warm–hot intergalactic medium (a sparse plasma with temperatures of 105 kelvin to 107 kelvin) residing in low-redshift filaments has been observed in emission4 and absorption5,6. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter7, has remained elusive, because earlier candidates for such detections8,9,10 were either falsified11,12 or suffered from low signal-to-noise ratios8,10 and unphysical misalignments of dark and luminous matter9,10. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies10,13 and diffuse, soft-X-ray emission4, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations4, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mass reconstruction of Abell 222/223.
Figure 2: Posterior probability distributions for cluster virial radii and filament strength.
Figure 3: Surface mass density of the best fit parametric model.

Similar content being viewed by others

References

  1. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments are woven into the cosmic web. Nature 380, 603–606 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Joeveer, M., Einasto, J. & Tago, E. Spatial distribution of galaxies and of clusters of galaxies in the southern galactic hemisphere. Mon. Not. R. Astron. Soc. 185, 357–370 (1978)

    Article  ADS  Google Scholar 

  3. Geller, M. J. & Huchra, J. P. Mapping the universe. Science 246, 897–903 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Werner, N. et al. Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223. Astron. Astrophys. 482, L29–L33 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Buote, D. A. et al. X-ray absorption by WHIM in the Sculptor Wall. Astrophys. J. 695, 1351–1356 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Fang, T. et al. Confirmation of X-ray absorption by warm-hot intergalactic medium in the Sculptor Wall. Astrophys. J. 714, 1715–1724 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Aragón-Calvo, M. A., van de Weygaert, R. & Jones, B. J. T. Multiscale phenomenology of the cosmic web. Mon. Not. R. Astron. Soc. 408, 2163–2187 (2010)

    Article  ADS  Google Scholar 

  8. Kaiser, N. et al. A photometric and weak lensing analysis of the z = 0.42 supercluster MS0302+17. Preprint at http://arxiv.org/abs/astro-ph/9809268 (1998)

  9. Gray, M. E. et al. Probing the distribution of dark matter in the A901/902 supercluster with weak lensing. Astrophys. J. 568, 141–162 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Dietrich, J. P., Schneider, P., Clowe, D., Romano-Díaz, E. & Kerp, J. Weak lensing study of dark matter filaments and application to the binary cluster A 222 and A 223. Astron. Astrophys. 440, 453–471 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Gavazzi, R., Mellier, Y., Fort, B., Cuillandre, J.-C. & Dantel-Fort, M. Mass and light in the supercluster of galaxies MS0302+17. Astron. Astrophys. 422, 407–422 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Heymans, C. et al. The dark matter environment of the Abell 901/902 supercluster: a weak lensing analysis of the HST STAGES survey. Mon. Not. R. Astron. Soc. 385, 1431–1442 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Dietrich, J. P., Clowe, D. I. & Soucail, G. Spectroscopy of the neighboring massive clusters Abell 222 and Abell 223. Astron. Astrophys. 394, 395–403 (2002)

    Article  ADS  Google Scholar 

  14. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    Article  ADS  Google Scholar 

  15. Dolag, K. et al. Numerical study of halo concentrations in dark-energy cosmologies. Astron. Astrophys. 416, 853–864 (2004)

    Article  ADS  Google Scholar 

  16. King, I. R. The structure of star clusters. III. Some simple dynamical models. Astron. J. 71, 64–75 (1966)

    Article  ADS  Google Scholar 

  17. Colberg, J. M., Krughoff, K. S. & Connolly, A. J. Intercluster filaments in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 359, 272–282 (2005)

    Article  ADS  Google Scholar 

  18. Mead, J. M. G., King, L. J. & McCarthy, I. G. Probing the cosmic web: intercluster filament detection using gravitational lensing. Mon. Not. R. Astron. Soc. 401, 2257–2267 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Kahn, F. D. & Woltjer, L. Intergalactic matter and the galaxy. Astrophys. J. 130, 705–717 (1959)

    Article  ADS  Google Scholar 

  20. Sandage, A. The redshift-distance relation. IX—Perturbation of the very nearby velocity field by the mass of the Local Group. Astrophys. J. 307, 1–19 (1986)

    Article  ADS  Google Scholar 

  21. Simionescu, A. et al. Baryons at the edge of the X-ray-brightest galaxy cluster. Science 331, 1576–1579 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ilbert, O. et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. Astron. Astrophys. 457, 841–856 (2006)

    Article  ADS  Google Scholar 

  23. Allen, S. W. et al. Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 383, 879–896 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Davé, R. et al. Baryons in the warm-hot intergalactic medium. Astrophys. J. 552, 473–483 (2001)

    Article  ADS  Google Scholar 

  25. Miller, L., Kitching, T. D., Heymans, C., Heavens, A. F. & van Waerbeke, L. Bayesian galaxy shape measurement for weak lensing surveys—I. Methodology and a fast-fitting algorithm. Mon. Not. R. Astron. Soc. 382, 315–324 (2007)

    Article  ADS  Google Scholar 

  26. Kitching, T. D., Miller, L., Heymans, C. E., van Waerbeke, L. & Heavens, A. F. Bayesian galaxy shape measurement for weak lensing surveys—II. Application to simulations. Mon. Not. R. Astron. Soc. 390, 149–167 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.P.D. was supported by NSF grant AST 0807304. A.S. acknowledges support from the National Aeronautics and Space Administration through Einstein Postdoctoral Fellowship Award Number PF9-00070.

Author information

Authors and Affiliations

Authors

Contributions

J.P.D. led the project, reduced the optical data, performed the weak lensing analysis and wrote the manuscript. N.W. contributed to the writing of the manuscript. N.W., A.F. and A.S. performed the X-ray analysis and estimated the gas mass. L.M. and T.K. wrote the shear estimation code. The timing argument was made by D.C. All authors discussed all results and commented on the manuscript.

Corresponding author

Correspondence to Jörg P. Dietrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and additional references, Supplementary Figure 1 which shows the E- and B-mode reconstruction of the A 222/223 supercluster field and Supplementary Figure 2 which shows the posterior probability distributions for the 8 free parameters when we leave the ellipticity of A 222 and A 223-S free. (PDF 479 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, J., Werner, N., Clowe, D. et al. A filament of dark matter between two clusters of galaxies. Nature 487, 202–204 (2012). https://doi.org/10.1038/nature11224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11224

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing