Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells

Abstract

Chemokines have a central role in regulating processes essential to the immune function of T cells1,2,3, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys4,5,6,7,8,9,10, and CXCL10 aids T cells in shortening the average time taken to find rare targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemokine and chemokine receptor expression in the brain during chronic toxoplasmosis.
Figure 2: CXCL10 affects the CD8 + T-cell population and the control of parasite replication.
Figure 3: CD8 + T-cell migration tracks are consistent with generalized Lévy walks.
Figure 4: Generalized Lévy walks find targets more efficiently than random walks.

Similar content being viewed by others

References

  1. Bromley, S. K., Mempel, T. R. & Luster, A. D. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nature Immunol. 9, 970–980 (2008)

    Article  CAS  Google Scholar 

  2. Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Ebert, L. M., Schaerli, P. & Moser, B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol. Immunol. 42, 799–809 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Bartumeus, F., Peters, F., Pueyo, S., Marrase, C. & Catalan, J. Helical Lévy walks: adjusting searching statistics to resource availability in microzooplankton. Proc. Natl Acad. Sci. USA 100, 12771–12775 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Reynolds, A. M. & Frye, M. A. Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2, e354 (2007)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Humphries, N. E. et al. Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 1066–1069 (2010)

    Article  ADS  CAS  Google Scholar 

  7. de Jager, M., Weissing, F. J., Herman, P. M. J., Nolet, B. A. & van de Koppel, J. Lévy walks evolve through interaction between movement and environmental complexity. Science 332, 1551–1553 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Boyer, D. et al. Scale-free foraging by primates emerges from their interaction with a complex environment. Proc. R. Soc. Lond. B 273, 1743–1750 (2006)

    Article  Google Scholar 

  9. Reynolds, A. M. et al. Displaced honey bees perform optimal scale-free search flights. Ecology 88, 1955–1961 (2007)

    Article  PubMed  Google Scholar 

  10. Sims, D. W. et al. Scaling laws of marine predator search behaviour. Nature 451, 1098–1102 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Montoya, J. G. & Liesenfeld, O. Toxoplasmosis. Lancet 363, 1965–1976 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Denkers, E. Y. et al. Perforin-mediated cytolysis plays a limited role in host resistance to Toxoplasma gondii . J. Immunol. 159, 1903–1908 (1997)

    CAS  PubMed  Google Scholar 

  13. Gazzinelli, R., Xu, Y., Hieny, S., Cheever, A. & Sher, A. Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii . J. Immunol. 149, 175–180 (1992)

    CAS  PubMed  Google Scholar 

  14. Suzuki, Y., Orellana, M. A., Schreiber, R. D. & Remington, J. S. Interferon-γ: the major mediator of resistance against Toxoplasma gondii . Science 240, 516–518 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004)

    Article  CAS  Google Scholar 

  16. Sallusto, F., Lanzavecchia, A. & Mackay, C. R. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol. Today 19, 568–574 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Strack, A., Schluter, D., Asensio, V. C., Campbell, I. L. & Deckert, M. Regulation of the kinetics of intracerebral chemokine gene expression in murine Toxoplasma encephalitis: impact of host genetic factors. Glia 40, 372–377 (2002)

    Article  PubMed  Google Scholar 

  18. Khan, I. A. et al. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 12, 483–494 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, E. H. et al. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30, 300–311 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cahalan, M. D. & Parker, I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu. Rev. Immunol. 26, 585–626 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Zumofen, G. & Klafter, J. Laminar–localized-phase coexistence in dynamical systems. Phys. Rev. E 51, 1818–1821 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)

    Article  ADS  Google Scholar 

  24. Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004)

    Article  Google Scholar 

  25. Potdar, A. A., Lu, J., Jeon, J., Weaver, A. M. & Cummings, P. T. Bimodal analysis of mammary epithelial cell migration in two dimensions. Ann. Biomed. Eng. 37, 230–245 (2009)

    Article  PubMed  Google Scholar 

  26. Budhu, S. et al. CD8+ T cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells in vitro and in mouse tissues. J. Exp. Med. 207, 223–235 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, Y., Karlin, A., Loike, J. D. & Silverstein, S. C. Determination of the critical concentration of neutrophils required to block bacterial growth in tissues. J. Exp. Med. 200, 613–622 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Reynolds, A. M. & Bartumeus, F. Optimising the success of random destructive searches: Lévy walks can outperform ballistic motions. J. Theor. Biol. 260, 98–103 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. Sims, D. W., Righton, D. & Pitchford, J. W. Minimizing errors in identifying Lévy flight behaviour of organisms. J. Anim. Ecol. 76, 222–229 (2007)

    Article  PubMed  Google Scholar 

  31. Pepper, M., Dzierszinski, F., Crawford, A., Hunter, C. A. & Roos, D. Development of a system to study CD4+-T-cell responses to transgenic ovalbumin-expressing Toxoplasma gondii during toxoplasmosis. Infect. Immun. 72, 7240–7246 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dzierszinski, F. et al. Presentation of Toxoplasma gondii antigens via the endogenous major histocompatibility complex class I pathway in nonprofessional and professional antigen-presenting cells. Infect. Immun. 75, 5200–5209 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson, E. H., Wille-Reece, U., Dzierszinski, F. & Hunter, C. A. A critical role for IL-10 in limiting inflammation during toxoplasmic encephalitis. J. Neuroimmunol. 165, 63–74 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health AI-41158 (C.A.H.), AI-42334 (C.A.H.), EY-021314 (C.A.H.), T32-AI-055400 (T.H.H.), AI-081478 (T.H.H.), CA-069212 (A.D.L.), RNS-072298 (E.H.W.) and AI-090234 (B.J.); the National Science Foundation DMR-0520020 (E.J.B.) and DMR-1104637 (E.J.B. and A.J.L.); the state of Pennsylvania; Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research Grant 20592071 (K.N.); and the Ministry of Education, Culture, Sports, Science and Technology of Japan (K.N.). We acknowledge L. Zhang and the Penn Vet Imaging Facility for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

T.H.H. and E.J.B. contributed equally to this work. T.H.H. performed the immunological in vivo and imaging studies and wrote the paper. E.J.B. performed analysis of T-cell migration and designed the mathematical model. K.N. and E.D.T.W. collected data. A.J.L. and C.A.H. were involved in study design and contributed equally. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Andrea J. Liu or Christopher A. Hunter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10, Supplementary Tables 1-3, a Supplementary Discussion, Supplementary Text and Data, additional references and legends for Supplementary Movies 1-3. (PDF 806 kb)

Supplementary Movie 1

This movie shows OT-IGFP migration in the brains of control mice - see the Supplementary Information file for full legend. (MOV 4645 kb)

Supplementary Movie 2

This movie shows OT-IGFP migration in the brains of anti-CXCL10-treated mice – see the Supplementary Information file for full legend. (MOV 3610 kb)

Supplementary Movie 3

This movie shows OT-IGFP migration in the brains of pertussis-toxin-treated mice – see the Supplementary Information file for full legend. (MOV 2458 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, T., Banigan, E., Christian, D. et al. Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486, 545–548 (2012). https://doi.org/10.1038/nature11098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11098

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing