Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The suppression of star formation by powerful active galactic nuclei

Abstract

The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge1 results from the AGN quenching the surrounding star formation as it approaches its peak luminosity2,3,4. X-rays trace emission from AGN unambiguously5, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths6. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2–6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 1044 ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow7,8,9, expelling the interstellar medium of its host and transforming the galaxy’s properties in a brief period of cosmic time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Redshifts ( z ) and 2–8 keV X-ray luminosities ( L X ) of AGN in the CDF-N.
Figure 2: Average star formation rates, 〈SFR〉, derived from averaged far-infrared luminosities of 1 <  z  < 3 AGN, as a function of LX.

Similar content being viewed by others

References

  1. Häring, N. & Rix, H. W. On the black hole mass-bulge mass relation. Astrophys. J. 604, L89–L92 (2004)

    Article  ADS  Google Scholar 

  2. Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, L1–L4 (1998)

    ADS  Google Scholar 

  3. Fabian, A. C. The obscured growth of massive black holes. Mon. Not. R. Astron. Soc. 308, L39–L43 (1999)

    Article  ADS  CAS  Google Scholar 

  4. King, A. R. Black hole outflows. Mon. Not. R. Astron. Soc. 402, 1516–1522 (2010)

    Article  ADS  Google Scholar 

  5. Brandt, W. N. & Hasinger, G. Deep extragalactic X-ray surveys. Annu. Rev. Astron. Astrophys. 43, 827–859 (2005)

    Article  ADS  Google Scholar 

  6. Sanders, D. B. & Mirabel, I. F. Luminous infrared galaxies. Annu. Rev. Astron. Astrophys. 34, 749–792 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Springel, V., Di Matteo, T. & Hernquist, L. Modelling feedback from stars and black holes in galaxy mergers. Mon. Not. R. Astron. Soc. 361, 776–794 (2005)

    Article  ADS  Google Scholar 

  9. Sijacki, D., Springel, V., Di Matteo, T. & Herhquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 380, 877–900 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Hatziminaoglou, E. et al. HerMES: far infrared properties of known AGN in the HerMES fields. Astron. Astrophys. 518, L33 (2010)

    Article  ADS  Google Scholar 

  11. Alexander, D. M. et al. The Chandra Deep Field North Survey. XIII. 2 Ms point-source catalogs. Astron. J. 126, 539–574 (2003)

    Article  ADS  Google Scholar 

  12. Trouille, L., Barger, A. J., Cowie, L. L., Yang, Y. & Mushotzky, R. F. The OPTX Project. I. The flux and redshift catalogs for the CLANS, CLASXS, and CDF-N fields. Astrophys. J. 179 (Suppl.). 1–18 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Barger, A. J. et al. A highly complete spectroscopic survey of the GOODS-N field. Astrophys. J. 689, 687–708 (2008)

    Article  ADS  Google Scholar 

  14. Mateos, S. et al. XMM-Newton observations of the Lockman Hole IV: spectra of the brightest AGN. Astron. Astrophys. 444, 79–99 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Griffin, M. J. et al. The Herschel-SPIRE instrument and its in-flight performance. Astron. Astrophys. 518, L3 (2010)

    Article  ADS  Google Scholar 

  16. Oliver, S. J. et al. HerMES: SPIRE galaxy number counts at 250, 350, and 500 µm. Astron. Astrophys. 518, L21 (2010)

    Article  ADS  Google Scholar 

  17. Smith, A. J. et al. HerMES: point source catalogues from deep Herschel-SPIRE observations. Mon. Not. R. Astron. Soc. 419, 377–389 (2012)

    Article  ADS  Google Scholar 

  18. Kennicutt, R. C. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Ebrero, J. et al. The XMM-Newton serendipitous survey. VI. The X-ray luminosity function. Astron. Astrophys. 493, 55–69 (2009)

    Article  ADS  Google Scholar 

  20. Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006)

    Article  ADS  Google Scholar 

  21. Bower, R. G. et al. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Granato, G. L. et al. A physical model for the coevolution of QSOs and their spheroidal hosts. Astrophys. J. 600, 580–594 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Farrah, D. et al. Direct evidence for termination of obscured star formation by radiatively driven outflows in reddened QSOs. Astrophys. J. 745, 178 (2012)

    Article  ADS  Google Scholar 

  24. Cano-Díaz, M. et al. Observational evidence of quasar feedback quenching star formation at high redshift. Astron. Astrophys. 537, L8 (2012)

    Article  ADS  Google Scholar 

  25. Roseboom, I. G. et al. The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images. Mon. Not. R. Astron. Soc. 409, 48–65 (2010)

    Article  ADS  Google Scholar 

  26. Siebenmorgen, R. & Krug¨el, E. Dust in starburst nuclei and ULIRGs. SED models for observers. Astron. Astrophys. 461, 445–453 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Symeonidis, M. et al. The link between SCUBA and Spitzer: cold galaxies at z ≤ 1. Mon. Not. R. Astron. Soc. 397, 1728–1738 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Seymour, N. et al. HerMES: SPIRE emission from radio-selected active galactic nuclei. Mon. Not. R. Astron. Soc. 413, 1777–1786 (2011)

    Article  ADS  Google Scholar 

  29. Blain, A. W., Barnard, V. E. & Chapman, S. C. Submillimetre and far-infrared spectral energy distributions of galaxies: the luminosity-temperature relation and consequences for photometric redshifts. Mon. Not. R. Astron. Soc. 338, 733–744 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and which includes: University of Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); and Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA).

Author information

Authors and Affiliations

Authors

Contributions

This Letter represents the combined work of the HerMES collaboration, the SPIRE Instrument Team’s extragalactic survey. M.J.P. planned the study, and wrote the draft version of the paper. M.S. fitted models to the spectral energy distributions of the sources and J.D.V. performed the stacking analysis. All other co-authors contributed extensively and equally by their varied contributions to the SPIRE instrument, the Herschel mission, analysis of SPIRE and HerMES data, planning of HerMES observations and scientific support of HerMES, and by commenting on this manuscript as part of an internal review process.

Corresponding author

Correspondence to M. J. Page.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables 1-2, Supplementary Figures 1-5 and Supplementary References. (PDF 423 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, M., Symeonidis, M., Vieira, J. et al. The suppression of star formation by powerful active galactic nuclei. Nature 485, 213–216 (2012). https://doi.org/10.1038/nature11096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11096

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing