Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The 2.8 Å crystal structure of the dynein motor domain

Abstract

Dyneins are microtubule-based AAA+ motor complexes that power ciliary beating, cell division, cell migration and intracellular transport. Here we report the most complete structure obtained so far, to our knowledge, of the 380-kDa motor domain of Dictyostelium discoideum cytoplasmic dynein at 2.8 Å resolution; the data are reliable enough to discuss the structure and mechanism at the level of individual amino acid residues. Features that can be clearly visualized at this resolution include the coordination of ADP in each of four distinct nucleotide-binding sites in the ring-shaped AAA+ ATPase unit, a newly identified interaction interface between the ring and mechanical linker, and junctional structures between the ring and microtubule-binding stalk, all of which should be critical for the mechanism of dynein motility. We also identify a long-range allosteric communication pathway between the primary ATPase and the microtubule-binding sites. Our work provides a framework for understanding the mechanism of dynein-based motility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the dynein motor domain.
Figure 2: Structure of the four nucleotide-binding sites.
Figure 3: Linker–ring interactions.
Figure 4: Structure and function of stalk–strut and C sequence.
Figure 5: Proposed mechanism underlying dynein’s motor actions.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank under accession numbers 3VKG (ΔMTBD) and 3VKH (wild type).

References

  1. Höök, P. & Vallee, R. B. The dynein family at a glance. J. Cell Sci. 119, 4369–4371 (2006)

    Article  Google Scholar 

  2. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999)

    Article  CAS  Google Scholar 

  3. Vallee, R. B., Williams, J. C., Varma, D. & Barnhart, L. E. Dynein: An ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004)

    Article  CAS  Google Scholar 

  4. Scholey, J. M. Intraflagellar transport motors in cilia: moving along the cell’s antenna. J. Cell Biol. 180, 23–29 (2008)

    Article  CAS  Google Scholar 

  5. Gibbons, I. R. Cilia and flagella of eukaryotes. J. Cell Biol. 91, 107–124 (1981)

    Article  CAS  Google Scholar 

  6. DiBella, L. M. & King, S. M. Dynein motors of the Chlamydomonas flagellum. Int. Rev. Cytol. 210, 227–268 (2001)

    Article  CAS  Google Scholar 

  7. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999)

    CAS  Google Scholar 

  8. Tucker, P. A. & Sallai, L. The AAA+ superfamily—a myriad of motions. Curr. Opin. Struct. Biol. 17, 641–652 (2007)

    Article  CAS  Google Scholar 

  9. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005)

    Article  CAS  Google Scholar 

  10. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Samsó, M. & Koonce, M. P. 25 Angstrom resolution structure of a cytoplasmic dynein motor reveals a seven-member planar ring. J. Mol. Biol. 340, 1059–1072 (2004)

    Article  Google Scholar 

  12. Roberts, A. J. et al. AAA+ ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009)

    Article  CAS  Google Scholar 

  13. Gee, M. A., Heuser, J. E. & Vallee, R. B. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Koonce, M. P. Identification of a microtubule-binding domain in a cytoplasmic dynein heavy chain. J. Biol. Chem. 272, 19714–19718 (1997)

    Article  CAS  Google Scholar 

  15. Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nature Struct. Mol. Biol. 12, 513–519 (2005)

    Article  CAS  Google Scholar 

  16. Carter, A. P., Cho, C., Jin, L. & Vale, R. D. Crystal structure of the dynein motor domain. Science 331, 1159–1165 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Kon, T., Sutoh, K. & Kurisu, G. X-ray structure of a functional full-length dynein motor domain. Nature Struct. Mol. Biol. 18, 638–642 (2011)

    Article  CAS  Google Scholar 

  18. Koonce, M. P. & Samso, M. Overexpression of cytoplasmic dynein’s globular head causes a collapse of the interphase microtubule network in Dictyostelium . Mol. Biol. Cell 7, 935–948 (1996)

    Article  CAS  Google Scholar 

  19. Kon, T., Shima, T. & Sutoh, K. Protein engineering approaches to study the dynein mechanism using a dictyostelium expression system. Methods Cell Biol. 92, 65–82 (2009)

    Article  CAS  Google Scholar 

  20. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y. Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004)

    Article  CAS  Google Scholar 

  21. Iyer, L. M., Leipe, D. D., Koonin, E. V. & Aravind, L. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146, 11–31 (2004)

    Article  CAS  Google Scholar 

  22. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006)

    Article  CAS  Google Scholar 

  23. Mocz, G. & Gibbons, I. R. Phase partition analysis of nucleotide binding to axonemal dynein. Biochemistry 35, 9204–9211 (1996)

    Article  CAS  Google Scholar 

  24. Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987)

    Article  ADS  CAS  Google Scholar 

  25. Shpetner, H. S., Paschal, B. M. & Vallee, R. B. Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J. Cell Biol. 107, 1001–1009 (1988)

    Article  CAS  Google Scholar 

  26. Ogura, T., Whiteheart, S. W. & Wilkinson, A. J. Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J. Struct. Biol. 146, 106–112 (2004)

    Article  CAS  Google Scholar 

  27. Gai, D., Zhao, R., Li, D., Finkielstein, C. V. & Chen, X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119, 47–60 (2004)

    Article  CAS  Google Scholar 

  28. Suno, R. et al. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol. Cell 22, 575–585 (2006)

    Article  CAS  Google Scholar 

  29. Enemark, E. J. & Joshua-Tor, L. On helicases and other motor proteins. Curr. Opin. Struct. Biol. 18, 243–257 (2008)

    Article  CAS  Google Scholar 

  30. Gibbons, I. R. et al. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 280, 23960–23965 (2005)

    Article  CAS  Google Scholar 

  31. Carter, A. P. et al. Structure and functional role of dynein’s microtubule-binding domain. Science 322, 1691–1695 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Kon, T. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nature Struct. Mol. Biol. 16, 325–333 (2009)

    Article  CAS  Google Scholar 

  33. Numata, N., Shima, T., Ohkura, R., Kon, T. & Sutoh, K. C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett. 585, 1185–1190 (2011)

    Article  CAS  Google Scholar 

  34. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007)

    CAS  Google Scholar 

  35. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  36. Schröder, G. F., Levitt, M. & Brunger, A. T. Super-resolution biomolecular crystallography with low-resolution data. Nature 464, 1218–1222 (2010)

    Article  ADS  Google Scholar 

  37. Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc. Natl Acad. Sci. USA 104, 16134–16139 (2007)

    Article  ADS  CAS  Google Scholar 

  38. White, H. D., Belknap, B. & Webb, M. R. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry 36, 11828–11836 (1997)

    Article  CAS  Google Scholar 

  39. Blaauw, M., Linskens, M. H. & van Haastert, P. J. Efficient control of gene expression by a tetracycline-dependent transactivator in single Dictyostelium discoideum cells. Gene 252, 71–82 (2000)

    CAS  PubMed  Google Scholar 

  40. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  41. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003)

    Article  CAS  Google Scholar 

  42. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  43. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)

    Article  CAS  Google Scholar 

  44. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007)

    Article  CAS  Google Scholar 

  45. McDonald, I. K. & Thornton, J. M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994)

    Article  CAS  Google Scholar 

  46. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995)

    Article  CAS  Google Scholar 

  47. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  CAS  Google Scholar 

  48. Walshaw, J. & Woolfson, D. N. Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J. Mol. Biol. 307, 1427–1450 (2001)

    Article  CAS  Google Scholar 

  49. Strelkov, S. V. & Burkhard, P. Analysis of α-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation. J. Struct. Biol. 137, 54–64 (2002)

    Article  CAS  Google Scholar 

  50. Schrödinger, L. L. C. The PyMOL Molecular Graphics System, Version 1.3r1 (2010)

    Google Scholar 

Download references

Acknowledgements

We thank E. Yamashita, Y. Umena, M. Suzuki and A. Nakagawa of SPring-8 BL-44XU for their support during X-ray data collection; and T. Kikuchi and R. Ohkura for their technical support. We are grateful to C. Toyoshima for discussion of X-ray data collection; K. Kinosita Jr and T. Tsukihara for their support and encouragement. This work was supported by Grants-in-Aid for Scientific Research (17770126, 20687011 and 23370073 (T.K.), 16083205 and 17107003 (K.S.), 17053006, 18054008 and 20051006 (G.K.)) from the Ministry of Education, Culture Sports, Science, and Technology of Japan and a grant from the Human Frontier Science Program (T.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.K., K.S. and G.K. designed the study. T.K. purified, crystallized and collected X-ray data; T.O. and G.K. processed and refined X-ray data; T.K, R.S.-K, K.I. and T.S. performed functional analyses; T.K., K.S. and G.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Takahide Kon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1–13, Supplementary Methods, Supplementary Tables 1–2, and Supplementary References. (PDF 6364 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon, T., Oyama, T., Shimo-Kon, R. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345–350 (2012). https://doi.org/10.1038/nature10955

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10955

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing