Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Past extreme warming events linked to massive carbon release from thawing permafrost

Subjects

A Corrigendum to this article was published on 22 August 2012

Abstract

Between about 55.5 and 52 million years ago, Earth experienced a series of sudden and extreme global warming events (hyperthermals) superimposed on a long-term warming trend1. The first and largest of these events, the Palaeocene–Eocene Thermal Maximum (PETM), is characterized by a massive input of carbon, ocean acidification2 and an increase in global temperature of about 5 °C within a few thousand years3. Although various explanations for the PETM have been proposed4,5,6, a satisfactory model that accounts for the source, magnitude and timing of carbon release at the PETM and successive hyperthermals remains elusive. Here we use a new astronomically calibrated cyclostratigraphic record from central Italy7 to show that the Early Eocene hyperthermals occurred during orbits with a combination of high eccentricity and high obliquity. Corresponding climate–ecosystem–soil simulations accounting for rising concentrations of background greenhouse gases8 and orbital forcing show that the magnitude and timing of the PETM and subsequent hyperthermals can be explained by the orbitally triggered decomposition of soil organic carbon in circum-Arctic and Antarctic terrestrial permafrost. This massive carbon reservoir had the potential to repeatedly release thousands of petagrams (1015 grams) of carbon to the atmosphere–ocean system, once a long-term warming threshold had been reached just before the PETM. Replenishment of permafrost soil carbon stocks following peak warming probably contributed to the rapid recovery from each event9, while providing a sensitive carbon reservoir for the next hyperthermal10. As background temperatures continued to rise following the PETM, the areal extent of permafrost steadily declined, resulting in an incrementally smaller available carbon pool and smaller hyperthermals at each successive orbital forcing maximum. A mechanism linking Earth’s orbital properties with release of soil carbon from permafrost provides a unifying model accounting for the salient features of the hyperthermals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Orbital phasing of Early Eocene hyperthermals.
Figure 2: Climate-biome and permafrost simulations in response to increasing background GHG levels and orbital forcing.

Similar content being viewed by others

References

  1. Nicolo, M. J., Dickens, G. R., Hollis, C. J. & Zachos, J. Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology 35, 699–702 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441, 610–613 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Higgins, J. A. & Schrag, D. Beyond methane: towards a theory for the Paleocene-Eocene Thermal Maximum. Earth Planet. Sci. Lett. 245, 523–537 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1090, http://dx.doi.org/10.1029/2003PA000908 (2003)

    Article  ADS  Google Scholar 

  6. Dickens, G. R., O’Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Palaeocene. Paleoceanography 10, 965–971 (1995)

    Article  ADS  Google Scholar 

  7. Galeotti, S. et al. Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. Earth Planet. Sci. Lett. 290, 192–200 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Beerling, D. J., Fox, A., Stevenson, D. S. & Valdes, P. J. Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proc. Natl Acad. Sci. USA 108, 9770–9775 (2011)

    Article  ADS  CAS  Google Scholar 

  9. Bowen, G. J. & Zachos, J. Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum. Nature Geosci. 3, 866–869 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Dickens, J. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213, 169–183 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Zeebe, R. E., Zachos, J. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009)

    Article  ADS  CAS  Google Scholar 

  12. Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36, 315–318 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Buffett, B. & Archer, D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet. Sci. Lett. 227, 185–199 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Kent, D. V. et al. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett. 211, 13–26 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Storey, M., Duncan, R. A. & Swisher, C. C., III Paleocene-Eocene Thermal Maximum and the opening of the northeast Atlantic. Science 316, 587–589 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Cramer, B. S., Wright, J. D., Kent, D. V. & Aubry, M.-P. Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n-C25n). Paleoceanography 18, 1097, http://dx.doi.org/10.1029/2003PA000909 (2003)

    Article  ADS  Google Scholar 

  17. Lourens, L. et al. Astronomical pacing of late Palaeocene to early Eocene hyperthermal events. Nature 435, 1083–1087 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

    Article  ADS  Google Scholar 

  19. Westerhold, T., Röhl, U., McCarren, H. K. & Zachos, J. C. Latest on the absolute age of the Paleocene–Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and −17. Earth Planet. Sci. Lett. 287, 412–419 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714 (2008)

    Article  Google Scholar 

  21. Wilson, D. S. & Luyendyk, B. P. West Antarctic paleotopography estimated at the Eocene-Oligocene climate transition. Geophys. Res. Lett. 36, L16302 (2009)

    Article  ADS  Google Scholar 

  22. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem.. Cycles 23, GB2023, http://dx.doi.org/10.1029/2008GB003327 (2009)

    Article  ADS  Google Scholar 

  23. Ronov, A., Khain, V. & Balukhovsky, S. Atlas of Lithological-Paleogeographical Maps of the World: Mesozoic and Cenozoic of Continents and Oceans (eds Barsukov, V. L. & Laviorov, N. P. ) (Moscow Editorial Publishing Group VNII Zarubezh-Geologia, Moscow, 1989)

    Google Scholar 

  24. Sloan, L. C., Walker, J. C. G., Moore, T. C., Jr & Rea, D. K. Possible methane-induced polar warming in the early Eocene. Nature 357, 320–322 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Kalkreuth, W. D. et al. Petrological, palynological and geochemical characteristics of Eureka Sound group coals (Stenkul Fiord, southern Ellesmere Island, Arctic Canada). Int. J. Coal Geol. 30, 151–182 (1996)

    Article  CAS  Google Scholar 

  26. Röhl, U., Brinkhuis, H., Sluijs, A. & Fuller, M. in The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change between Australia and Antarctica (eds Exon, N. F., Malone, M. & Kennett, J. P. ) 113–125 (Geophysical Monograph Series 151, American Geophysical Union, 2004)

    Google Scholar 

  27. Schaefer, K., Zhang, T., Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63, 165–180 (2011)

    Article  ADS  CAS  Google Scholar 

  28. Elberling, B., Christensen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nature Geosci. 3, 332–335 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Pagani, M., Caldeira, K., Berner, R. & Beerling, D. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460, 85–88 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Clymo, R. S. The limits to peat bog growth. Phil. Trans. R. Soc. Lond. B 303, 605–654 (1984)

    Article  ADS  Google Scholar 

  31. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Thompson, S. L. & Pollard, D. Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS Version-2 Global Climate Model. J. Clim. 10, 871–900 (1997)

    Article  ADS  Google Scholar 

  33. Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections.. J. Geophys. Res. 108 (D19), 8171, http://dx.doi.org/10.1029/2002JD002559 (2003)

  34. Kiehl, J. T. et al. The National Center for Atmospheric Research Community Climate Model: CCM3. J. Clim. 11, 1131–1149 (1998)

    Article  ADS  Google Scholar 

  35. Thompson, S. L. & Pollard, D. A global climate model (GENESIS) with a land-surface-transfer scheme (LSX). Part I: present-day climate. J. Clim. 8, 732–761 (1995)

    Article  ADS  Google Scholar 

  36. Zhang, T., Heginbottom, J. A., Barry, R. G. & Brown, J. Further statistics on the distribution of permafrost and ground ice in the northern hemisphere. Polar Geogr. 24, 126–131 (2000)

    Article  Google Scholar 

  37. Sewall, J. O., Sloan, L. C., Huber, M. & Wing, S. Climate sensitivity to changes in land surface characteristics. Glob. Planet. Change 26, 445–465 (2000)

    Article  ADS  Google Scholar 

  38. Pagani, M., Caldeira, K., Archer, D. E. & Zachos, J. An ancient carbon mystery. Science 314, 1556–1557 (2006)

    Article  CAS  Google Scholar 

  39. Ramaswamy, V. et al. in Climate Change 2001: The Scientific Basis (eds Haughton, J. T. et al.) 351–416 (Cambridge Univ. Press, 2001)

    Google Scholar 

  40. Shi, G. Radiative forcing and greenhouse effect due to the atmospheric trace gasses. Sci. China B 35, 217–229 (1992)

    CAS  Google Scholar 

  41. Beerling, D., Berner, R. A., Mackenzie, F. T., Harfoot, M. B. & Pyle, J. A. Methane and the CH4-related greenhouse effect over the past 400 million years. Am. J. Sci. 309, 97–113 (2009)

    Article  ADS  CAS  Google Scholar 

  42. Dutta, K., Schuur, E. A. G., Neff, J. C. & Zimov, S. A. Potential carbon release from permafrost soils of Northeastern Siberia. Glob. Change Biol. 12, 2336–2351 (2006)

    Article  ADS  Google Scholar 

  43. Khvorostyanov, D. V., Ciais, P., Krinner, G. & Zimov, S. A. Vulnerability of east Siberia’s frozen carbon stores to future warming. Geophys. Res. Lett. 35, L10703, http://dx.doi.org/10.1029/2008GL033639 (2008)

    Article  ADS  Google Scholar 

  44. Zech, M. et al. Characterization and palaeoclimate of a loess-like permafrost palaeosol sequence in NE Siberia. Geoderma 143, 281–295 (2008)

    Article  ADS  CAS  Google Scholar 

  45. Price, J. S., Cagampan, J. & Kellner, E. Assessment of peat compressibility: is there an easy way? Hydrol. Process. 19, 3469–3475 (2005)

    Article  ADS  Google Scholar 

  46. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the US National Science Foundation under award ATM-0513402/0513421 to R.M.D. and D.P., and EAR-0628358 to M.P. D.J.B. acknowledges support from a Royal Society-Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Contributions

R.M.D. conceived the permafrost–hyperthermal model with input from S.G., M.P., D.T., D.P. and D.J.B. S.G. developed the cyclostratigraphic framework and performed MTM and SSA analyses. R.M.D., D.T. and D.P. designed the numerical modelling scheme and D.T. analysed the GCM results. D.J.B. and R.M.D. developed the changing GHG concentration scenarios for the model simulations. K.S. and T.Z. refined the carbon calculations. R.M.D. was the primary author and all co-authors contributed to the writing and response to reviewers.

Corresponding author

Correspondence to Robert M. DeConto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-13, Supplementary Table 1 and additional references. This file was replaced on 22 August 2012, as Supplementary Table 1 contained incorrect data – see the corrigendum 11424 linked to the this paper for details. (PDF 4161 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeConto, R., Galeotti, S., Pagani, M. et al. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484, 87–91 (2012). https://doi.org/10.1038/nature10929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10929

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing