Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous coherence in a cold exciton gas

Subjects

Abstract

If bosonic particles are cooled down below the temperature of quantum degeneracy, they can spontaneously form a coherent state in which individual matter waves synchronize and combine. Spontaneous coherence of matter waves forms the basis of a number of fundamental phenomena in physics, including superconductivity, superfluidity and Bose–Einstein condensation1,2. Spontaneous coherence is the key characteristic of condensation in momentum space3. Excitons—bound pairs of electrons and holes—form a model system to explore the quantum physics of cold bosons in solids4,5. Cold exciton gases can be realized in a system of indirect excitons, which can cool down below the temperature of quantum degeneracy owing to their long lifetimes6. Here we report measurements of spontaneous coherence in a gas of indirect excitons. We found that spontaneous coherence of excitons emerges in the region of the macroscopically ordered exciton state7 and in the region of vortices of linear polarization. The coherence length in these regions is much larger than in a classical gas, indicating a coherent state with a much narrower than classical exciton distribution in momentum space, characteristic of a condensate. A pattern of extended spontaneous coherence is correlated with a pattern of spontaneous polarization, revealing the properties of a multicomponent coherent state. We also observed phase singularities in the coherent exciton gas. All these phenomena emerge when the exciton gas is cooled below a few kelvin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emission, interference and coherence patterns of indirect excitons.
Figure 2: Coherence of indirect excitons in regions of an LBS and the external ring.
Figure 3: First-order coherence function and distribution in momentum space.
Figure 4: Patterns of the coherence length of excitons, ξ(x, y).
Figure 5: Fork-like defects in exciton interference patterns.

Similar content being viewed by others

References

  1. Cornell, E. A. & Wieman, C. E. Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Ketterle, W. When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)

    Article  ADS  CAS  Google Scholar 

  4. Keldysh, L. V. & Kozlov, A. N. Collective properties of excitons in semiconductors. Sov. Phys. JETP 27, 521–528 (1968)

    ADS  Google Scholar 

  5. Keldysh, L. V. & Kopaev Possible instability of the semimetallic state toward Coulomb interaction. Sov. Phys. Solid State 6, 2219–2224 (1965)

    Google Scholar 

  6. Butov, L. V. et al. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons. Phys. Rev. Lett. 86, 5608–5611 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Chen, X. M. & Quinn, J. J. Excitonic charge-density-wave instability of spatially separated electron-hole layers in strong magnetic fields. Phys. Rev. Lett. 67, 895–898 (1991)

    Article  ADS  CAS  Google Scholar 

  9. Wu, C., Shem, I. M. & Exciton condensation with spontaneous time-reversal symmetry breaking Preprint at http://arXiv.org/abs/0809.3532v1 (2008)

  10. Tikhodeev, S. G., Kopelevich, G. A. & Gippius, N. A. Exciton transport in Cu2O: phonon wind versus superfluidity. Phys. Status Solidi B 206, 45–53 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Jang, J. I. & Wolfe, J. P. Auger recombination and biexcitons in Cu2O: a case for dark exciton matter. Phys. Rev. B 74, 045211 (2006)

    Article  ADS  Google Scholar 

  12. Keldysh, L. V. The electron-hole liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986)

    Article  ADS  CAS  Google Scholar 

  13. Lozovik & Yudson, V. I. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. Sov. Phys. JETP 44, 389–397 (1976)

    ADS  Google Scholar 

  14. Fukuzawa, T., Kano, S. S., Gustafson, T. K. & Ogawa, T. Possibility of coherent-light emission from Bose condensed states of SEHPs. Surf. Sci. 228, 482–485 (1990)

    Article  ADS  CAS  Google Scholar 

  15. Maialle, M. Z., de Andrada e Silva, E. A. & Sham, L. J. Exciton spin dynamics in quantum wells. Phys. Rev. B 47, 15776–15788 (1993)

    Article  ADS  CAS  Google Scholar 

  16. Butov, L. V. & Filin, A. I. Anomalous transport and luminescence of indirect excitons in AlAs/GaAs coupled quantum wells as evidence for exciton condensation. Phys. Rev. B 58, 1980–2000 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet. Phys. Rev. Lett. 84, 5808–5811 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Eisenstein, J. P. & MacDonald, A. H. Bose-Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Butov, L. V., Zrenner, A., Abstreiter, G., Böhm, G. & Weimann, G. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. Phys. Rev. Lett. 73, 304–307 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Tiemann, L. et al. Exciton condensate at a total filling factor of one in Corbino two-dimensional electron bilayers. Phys. Rev. B 77, 033306 (2008)

    Article  ADS  Google Scholar 

  22. Karmakar, B., Pellegrini, V., Pinczuk, A., Pfeiffer, L. N. & West, K. W. First-order quantum phase transition of excitons in quantum hall bilayers. Phys. Rev. Lett. 102, 036802 (2009)

    Article  ADS  Google Scholar 

  23. Sen., Yang, Hammack, A. T., Fogler, M. M., Butov, L. V. & Gossard, A. C. Coherence length of cold exciton gases in coupled quantum wells. Phys. Rev. Lett. 97, 187402 (2006)

    Article  ADS  Google Scholar 

  24. Fogler, M. M. Sen, Yang, Hammack, A. T., Butov, L. V. & Gossard, A. C. Effect of spatial resolution on the estimates of the coherence length of excitons in quantum wells. Phys. Rev. B 78, 035411 (2008)

    Article  ADS  Google Scholar 

  25. Read, D., Liew, T. C. H., Rubo, Y. G. & Kavokin, A. V. Stochastic polarization formation in exciton-polariton Bose-Einstein condensates. Phys. Rev. B 80, 195309 (2009)

    Article  ADS  Google Scholar 

  26. Butov, L. V. et al. Formation mechanism and low temperature instability of exciton rings. Phys. Rev. Lett. 92, 117404 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Rapaport, R. et al. Charge separation of dense two dimensional electron-hole gases: mechanism for exciton ring pattern formation. Phys. Rev. Lett. 92, 117405 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Scheuer, J. & Orenstein, M. Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities. Science 285, 230–233 (1999)

    Article  CAS  Google Scholar 

  29. Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Levitov, T. Ostatnický, L. Sham, B. Simons and C. Wu for discussions. This work was supported by the DOE Office of Basic Energy Sciences (DE-FG02-07ER46449). The development of spectroscopy in a dilution refrigerator was supported by ARO and NSF. M.M.F. was supported by the UCOP. A.V.K. was supported by the Royal Society (UK).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper.

Corresponding author

Correspondence to A. A. High.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-5 and additional references. (PDF 1132 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

High, A., Leonard, J., Hammack, A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012). https://doi.org/10.1038/nature10903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10903

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing