Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification and characterization of a bacterial hydrosulphide ion channel

Abstract

The hydrosulphide ion (HS) and its undissociated form, hydrogen sulphide (H2S), which are believed to have been critical to the origin of life on Earth1, remain important in physiology and cellular signalling2. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction2,3,4. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H2S (ref. 4). The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD+, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite3. Above a certain concentration threshold, both H2S and HS inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase5, necessitating a release mechanism for the export of this toxic metabolite from the cell5,6,7,8,9. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate10,11 (FocA) and for nitrite12 (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel’s crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic analyses and functional characterization of FNT3 and the asrABC operon.
Figure 2: Binding and transport activity of HSC in reconstituted proteoliposomes.
Figure 3: Structural and functional characterization of the ion permeation pathway.
Figure 4: Structural and functional characterization of possible gating mechanisms.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors of HSC for high, medium and low pH have been deposited in the Protein Data Bank under accession codes 3TDO, 3TDR and 3TDP, respectively, and those of the Lys 16 Ser, Leu 82 Val, Thr 84 Ala, Lys 148 Glu and Phe 194 Ile mutants have been deposited under the codes 3TE2, 3TDX, 3TE1, 3TE0 and 3TDS, respectively.

References

  1. Wächtershäuser, G. Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog. Biophys. Mol. Biol. 58, 85–201 (1992)

    Article  Google Scholar 

  2. Kabil, O. & Banerjee, R. Redox biochemistry of hydrogen sulfide. J. Biol. Chem. 285, 21903–21907 (2010)

    Article  CAS  Google Scholar 

  3. Dhillon, A., Goswami, S., Riley, M., Teske, A. & Sogin, M. Domain evolution and functional diversification of sulfite reductases. Astrobiology 5, 18–29 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Rabus, R., Hansen, T. & Widdel, F. in The Prokaryotes: Ecophysiology and Biochemistry Vol. 2 (eds Dworkin, M., et al.) 659–768 (Springer, 2006)

    Book  Google Scholar 

  5. Goffredi, S. K., Childress, J. J., Desaulniers, N. T. & Lallier, F. J. Sulfide acquisition by the vent worm Riftia pachyptila appears to be via uptake of HS, rather than H2S. J. Exp. Biol. 200, 2609–2616 (1997)

    CAS  PubMed  Google Scholar 

  6. Jacques, A. G. The kinetics of penetration: XII. Hydrogen sulfide. J. Gen. Physiol. 19, 397–418 (1936)

    Article  CAS  Google Scholar 

  7. Freytag, J. K. et al. A paradox resolved: sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy. Proc. Natl Acad. Sci. USA 98, 13408–13413 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Lee, J. K. et al. Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. Proc. Natl Acad. Sci. USA 102, 18932–18937 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Mathai, J. C. et al. No facilitator required for membrane transport of hydrogen sulfide. Proc. Natl Acad. Sci. USA 106, 16633–16638 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Suppmann, B. & Sawers, G. Isolation and characterization of hypophosphite–resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol. Microbiol. 11, 965–982 (1994)

    Article  CAS  Google Scholar 

  11. Waight, A. B., Love, J. & Wang, D. N. Structure and mechanism of a pentameric formate channel. Nature Struct. Mol. Biol. 17, 31–37 (2010)

    Article  CAS  Google Scholar 

  12. Jia, W., Tovell, N., Clegg, S., Trimmer, M. & Cole, J. A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417, 297–304 (2009)

    Article  CAS  Google Scholar 

  13. Hughes, M. N., Centelles, M. N. & Moore, K. P. Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic. Biol. Med. 47, 1346–1353 (2009)

    Article  CAS  Google Scholar 

  14. Hirshfield, I. N., Terzulli, S. & O’Byrne, C. Weak organic acids: a panoply of effects on bacteria. Sci. Prog. 86, 245–269 (2003)

    Article  CAS  Google Scholar 

  15. Wang, Y. et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462, 467–472 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Lu, W. et al. pH-dependent gating in a FocA formate channel. Science 332, 352–354 (2011)

    Article  ADS  Google Scholar 

  17. Das, P., Lahiri, A. & Chakravortty, D. Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages. Microbiology 155, 2476–2489 (2009)

    Article  CAS  Google Scholar 

  18. Crane, B. R. & Getzoff, E. D. The relationship between structure and function for the sulfite reductases. Curr. Opin. Struct. Biol. 6, 744–756 (1996)

    Article  CAS  Google Scholar 

  19. Hallenbeck, P. C., Clark, M. A. & Barrett, E. L. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase. J. Bacteriol. 171, 3008–3015 (1989)

    Article  CAS  Google Scholar 

  20. Wilson, W. J. &. Blair, E. M. M.’v. A combination of bismuth and sodium sulphite affording an enrichment and selective medium for the typhoid-paratyphoid groups of bacteria. J. Pathol. Bacteriol. 29, 310–311 (1926)

    Article  CAS  Google Scholar 

  21. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Middleton, R. E., Pheasant, D. J. & Miller, C. Purification, reconstitution, and subunit composition of a voltage-gated chloride channel from Torpedo electroplax. Biochemistry 33, 13189–13198 (1994)

    Article  CAS  Google Scholar 

  23. Savage, D. F., O’Connell, J. D., III, Miercke, L. J., Finer–Moore, J. & Stroud, R. M. Structural context shapes the aquaporin selectivity filter. Proc. Natl Acad. Sci. USA 107, 17164–17169 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Feth, S., Gibbs, G. V., Boisen, M. B., Jr & Myers, R. H. Promolecule radii for nitrides, oxides, and sulfides. A comparison with effective ionic and crystal radii. J. Phys. Chem. 97, 11445–11450 (1993)

    Article  CAS  Google Scholar 

  25. Tai, C. H. et al. Characterization of the allosteric anion-binding site of O-acetylserine sulfhydrylase. Biochemistry 40, 7446–7452 (2001)

    Article  CAS  Google Scholar 

  26. Hille, B. Ionic Channels of Excitable Membranes 362–389 (Sinauer, 1992)

    Google Scholar 

  27. Yasui, M. et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402, 184–187 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Rychkov, G. Y., Pusch, M., Roberts, M. L., Jentsch, T. J. & Bretag, A. H. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J. Gen. Physiol. 111, 653–665 (1998)

    Article  CAS  Google Scholar 

  29. Simons, J. & Jordan, K. D. Ab initio electronic structure of anions. Chem. Rev. 87, 535–555 (1987)

    Article  CAS  Google Scholar 

  30. Penel, S. et al. Databases of homologous gene families for comparative genomics. BMC Bioinformatics 10 (suppl. 6). S3 (2009)

    Article  Google Scholar 

  31. Clamp, M., Cuff, J., Searle, S. M. & Barton, G. J. The Jalview Java alignment editor. Bioinformatics 20, 426–427 (2004)

    Article  CAS  Google Scholar 

  32. Han, M. V. & Zmasek, C. M. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics 10, 356 (2009)

    Article  Google Scholar 

  33. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 39, D32–D37 (2011)

    Article  CAS  Google Scholar 

  34. Auer, M. et al. High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter. Biochemistry 40, 6628–6635 (2001)

    Article  CAS  Google Scholar 

  35. Wang, D. N. et al. Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. Biochim. Biophys. Acta 1610, 23–36 (2003)

    Article  CAS  Google Scholar 

  36. Cadene, M. & Chait, B. A robust, detergent friendly method for mass spectrometry analysis of integral membrane proteins. Anal. Chem. 72, 5655–5658 (2000)

    Article  CAS  Google Scholar 

  37. Li, X. D. et al. Monomeric state and ligand binding of recombinant GABA transporter from Escherichia coli. FEBS Lett. 494, 165–169 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Safferling, M. et al. The TetL tetracycline efflux protein from Bacillus subtilis is a dimer in the membrane and in detergent solution. Biochemistry 42, 13969–13976 (2003)

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. & Miror, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276A, 307–326 (1997)

    Article  Google Scholar 

  40. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  42. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360,–376 (1996)

    Article  Google Scholar 

  43. DeLano, W. L., The PyMOL Molecular Graphics System 〈http://www.pymol.org〉 (2002)

Download references

Acknowledgements

We are grateful the staff at beamlines X25 and X29 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline 23ID of the Advanced Photon Source at Argonne National Laboratory for assistance in X-ray diffraction experiments. We thank A. B. Waight for suggesting the project; J. J. Marden for assistance with cloning of mutants; T. Neubert and S. Blais for mass spectrometry measurements; the 2010 CCP4 Workshop for assistance in processing diffraction data; and A. David, H. Jackson, N. K. Karpowich, J. J. Marden, R. L. Mancusso, Y. Pan and M. Zhou for discussions. This work was financially supported by the NIH (R01-GM093825, R01-DK073973, R01-MH083840 and U54-GM075026). B.K.C. was partly supported by an NIH Supplement Grant to Promote Diversity in Health-Related Research (R01-DK053973-08A1S1) and an NIH pre-doctoral fellowship (F31-AI086072).

Author information

Authors and Affiliations

Authors

Contributions

B.K.C. did the experiments. B.K.C. and D.-N.W. wrote the manuscript.

Corresponding author

Correspondence to Da-Neng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-14. (PDF 13518 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czyzewski, B., Wang, DN. Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483, 494–497 (2012). https://doi.org/10.1038/nature10881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10881

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing