Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

Abstract

Dirac points are central to many phenomena in condensed-matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators1,2. At a Dirac point, two energy bands intersect linearly and the electrons behave as relativistic Dirac fermions. In solids, the rigid structure of the material determines the mass and velocity of the electrons, as well as their interactions. A different, highly flexible means of studying condensed-matter phenomena is to create model systems using ultracold atoms trapped in the periodic potential of interfering laser beams3,4. Here we report the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum bandgap inside the Brillouin zone at the positions of the two Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking inversion symmetry. Moreover, changing the lattice anisotropy allows us to change the positions of the Dirac points inside the Brillouin zone. When the anisotropy exceeds a critical limit, the two Dirac points merge and annihilate each other—a situation that has recently attracted considerable theoretical interest5,6,7,8,9 but that is extremely challenging to observe in solids10. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials in which the topology of the band structure is crucial, but also provide an avenue to exploring many-body phases resulting from the interplay of complex lattice geometries with interactions11,12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical lattice with adjustable geometry.
Figure 2: Probing the Dirac points.
Figure 3: Movement of the Dirac points.
Figure 4: Topological transition.

Similar content being viewed by others

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  CAS  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Lewenstein, M. et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007)

    Article  ADS  Google Scholar 

  4. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Hasegawa, Y., Konno, R., Nakano, H. & Kohmoto, M. Zero modes of tight-binding electrons on the honeycomb lattice. Phys. Rev. B 74, 033413 (2006)

    Article  ADS  Google Scholar 

  6. Zhu, S.-L., Wang, B. & Duan, L.-M. Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys. Rev. Lett. 98, 260402 (2007)

    Article  ADS  Google Scholar 

  7. Wunsch, B. Guinea, F. & Sols, F. Dirac-point engineering and topological phase transitions in honeycomb optical lattices. N. J. Phys. 10, 103027 (2008)

    Article  Google Scholar 

  8. Montambaux, G., Piéchon, F., Fuchs, J.-N. & Goerbig, M. O. Merging of Dirac points in a two-dimensional crystal. Phys. Rev. B 80, 153412 (2009)

    Article  ADS  Google Scholar 

  9. Lee, K. L., Grémaud, B., Han, R., Englert, B.-G. & Miniatura, C. Ultracold fermions in a graphene-type optical lattice. Phys. Rev. A 80, 043411 (2009)

    Article  ADS  Google Scholar 

  10. Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009)

    Article  ADS  Google Scholar 

  11. Zhao, E. & Paramekanti, A. BCS-BEC crossover on the two-dimensional honeycomb lattice. Phys. Rev. Lett. 97, 230404 (2006)

    Article  ADS  Google Scholar 

  12. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Meng, Z. Y., Lang, T. C., Wessel, S., Assaad, F. F. & Muramatsu, A. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature 464, 847–851 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008)

    Article  ADS  Google Scholar 

  16. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Soltan-Panahi, P., Lühmann, D.-S., Struck, J., Windpassinger, P. & Sengstock, K. Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices. Nature Phys. 8, 71–75 (2012)

    Article  ADS  CAS  Google Scholar 

  19. Salger, T., Geckeler, C., Kling, S. & Weitz, M. Atomic Landau-Zener tunneling in Fourier-synthesized optical lattices. Phys. Rev. Lett. 99, 190405 (2007)

    Article  ADS  Google Scholar 

  20. Asano, K. & Hotta, C. Designing Dirac points in two-dimensional lattices. Phys. Rev. B 83, 245125 (2011)

    Article  ADS  Google Scholar 

  21. Ben Dahan, M., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508–4511 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Köhl, M., Moritz, H., Stöferle, T., Günter, K. & Esslinger, T. Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005)

    Article  ADS  Google Scholar 

  23. Kling, S., Salger, T., Grossert, C. & Weitz, M. Atomic Bloch-Zener oscillations and Stückelberg interferometry in optical lattices. Phys. Rev. Lett. 105, 215301 (2010)

    Article  ADS  Google Scholar 

  24. Zenesini, A., Ciampini, D., Morsch, O. & Arimondo, E. Observation of Stückelberg oscillations in accelerated optical lattices. Phys. Rev. A 82, 065601 (2010)

    Article  ADS  Google Scholar 

  25. Lin, Y.-J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010)

    Article  ADS  Google Scholar 

  27. Lubasch, M., Murg, V., Schneider, U., Cirac, J. I. & Bañuls, M.-C. Adiabatic preparation of a Heisenberg antiferromagnet using an optical superlattice. Phys. Rev. Lett. 107, 165301 (2011)

    Article  ADS  Google Scholar 

  28. Sachdev, S. Quantum magnetism and criticality. Nature Phys. 4, 173–185 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Hemmerich, A., Schropp, D., Esslinger, T. & Hänsch, T. W. Elastic scattering of rubidium atoms by two crossed standing waves. Europhys. Lett. 18, 391–395 (1992)

    Article  ADS  CAS  Google Scholar 

  30. Ma, L.-S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19, 1777–1779 (1994)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Poletti for bringing our attention to honeycomb lattices without six-fold symmetry, and N. Cooper and F. Hassler for discussions. We acknowledge SNF, NCCR-MaNEP, NCCR-QSIT, NAME-QUAM (EU, FET open), SQMS (ERC advanced grant) and ESF (POLATOM) for funding.

Author information

Authors and Affiliations

Authors

Contributions

The data were measured and analysed by L.T., D.G., T.U. and G.J. The tunable optical lattice was built by D.G. The experimental concept was developed by T.E. All authors contributed extensively to the discussion of the results, as well as to the preparation of the manuscript.

Corresponding author

Correspondence to Tilman Esslinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarruell, L., Greif, D., Uehlinger, T. et al. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012). https://doi.org/10.1038/nature10871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10871

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing