Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching

Abstract

Strigolactones were originally identified as stimulators of the germination of root-parasitic weeds1 that pose a serious threat to resource-limited agriculture2. They are mostly exuded from roots and function as signalling compounds in the initiation of arbuscular mycorrhizae3, which are plant–fungus symbionts with a global effect on carbon and phosphate cycling4. Recently, strigolactones were established to be phytohormones that regulate plant shoot architecture by inhibiting the outgrowth of axillary buds5,6. Despite their importance, it is not known how strigolactones are transported. ATP-binding cassette (ABC) transporters, however, are known to have functions in phytohormone translocation7,8,9. Here we show that the Petunia hybrida ABC transporter PDR1 has a key role in regulating the development of arbuscular mycorrhizae and axillary branches, by functioning as a cellular strigolactone exporter. P. hybrida pdr1 mutants are defective in strigolactone exudation from their roots, resulting in reduced symbiotic interactions. Above ground, pdr1 mutants have an enhanced branching phenotype, which is indicative of impaired strigolactone allocation. Overexpression of Petunia axillaris PDR1 in Arabidopsis thaliana results in increased tolerance to high concentrations of a synthetic strigolactone, consistent with increased export of strigolactones from the roots. PDR1 is the first known component in strigolactone transport, providing new opportunities for investigating and manipulating strigolactone-dependent processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Below-ground PDR1 expression and PDR1 localization.
Figure 2: Below-ground pdr1 phenotypes.
Figure 3: Orobanchol content and PDR1-dependent GR24 tolerance and transport.
Figure 4: Above-ground PDR1 expression and pdr1 -related branching phenotypes.

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

Sequences for P. hybrida PDR1, a 1.8-kb element upstream of PDR1 and the P. axillaris orthologue of PDR1 have been deposited in the GenBank database under accession numbers JQ292813, JQ292814 and JQ292812.

References

  1. Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E. & Egley, G. H. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189–1190 (1966)

    Article  ADS  CAS  Google Scholar 

  2. Yoder, J. I. & Scholes, J. D. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 13, 478–484 (2010)

    Article  CAS  Google Scholar 

  3. Akiyama, K., Matsuzaki, K.-I. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev. Microbiol. 6, 763–775 (2008)

    Article  CAS  Google Scholar 

  5. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Petrasek, J. & Friml, J. Auxin transport routes in plant development. Development 136, 2675–2688 (2009)

    Article  CAS  Google Scholar 

  8. Kuromori, T. et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl Acad. Sci. USA 107, 2361–2366 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Kang, J. et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl Acad. Sci. USA 107, 2355–2360 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Matusova, R. et al. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139, 920–934 (2005)

    Article  CAS  Google Scholar 

  11. Verrier, P. J. et al. Plant ABC proteins — a unified nomenclature and updated inventory. Trends Plant Sci. 13, 151–159 (2008)

    Article  CAS  Google Scholar 

  12. Moons, A. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta 229, 53–71 (2008)

    Article  CAS  Google Scholar 

  13. Badri, D. V. et al. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol. 151, 2006–2017 (2009)

    Article  CAS  Google Scholar 

  14. Sugiyama, A., Shitan, N. & Yazaki, K. Signaling from soybean roots to rhizobium: an ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal. Behav. 3, 38–40 (2008)

    Article  Google Scholar 

  15. Jasinski, M. et al. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13, 1095–1107 (2001)

    Article  CAS  Google Scholar 

  16. Hayward, A., Stirnberg, P., Beveridge, C. & Leyser, O. Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151, 400–412 (2009)

    Article  CAS  Google Scholar 

  17. Hanlon, M. T. & Coenen, C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol. 189, 701–709 (2011)

    Article  Google Scholar 

  18. Sharda, J. N. & Koide, R. T. Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi? New Phytol. 180, 696–701 (2008)

    Article  CAS  Google Scholar 

  19. Koes, R. et al. Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc. Natl Acad. Sci. USA 92, 8149–8153 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Snowden, K. C. et al. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17, 746–759 (2005)

    Article  CAS  Google Scholar 

  21. Reddy, D. M. R. S., Schorderet, M., Feller, U. & Reinhardt, D. A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J. 51, 739–750 (2007)

    Article  Google Scholar 

  22. Zhang, Q., Blaylock, L. A. & Harrison, M. J. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22, 1483–1497 (2010)

    Article  CAS  Google Scholar 

  23. Kohlen, W. et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 155, 974–987 (2011)

    Article  CAS  Google Scholar 

  24. Ruyter-Spira, C. et al. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol. 155, 721–734 (2011)

    Article  CAS  Google Scholar 

  25. Beveridge, C. A. & Kyozuka, J. New genes in the strigolactone-related shoot branching pathway. Curr. Opin. Plant Biol. 13, 34–39 (2010)

    Article  CAS  Google Scholar 

  26. Mashiguchi, K. et al. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci. Biotechnol. Biochem. 73, 2460–2465 (2009)

    Article  CAS  Google Scholar 

  27. Domagalska, M. A. & Leyser, O. Signal integration in the control of shoot branching. Nature Rev. Mol. Cell Biol. 12, 211–221 (2011)

    Article  CAS  Google Scholar 

  28. Brewer, P. B., Dun, E. A., Ferguson, B. J., Rameau, C. & Beveridge, C. A. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol. 150, 482–493 (2009)

    Article  CAS  Google Scholar 

  29. Crawford, S. et al. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137, 2905–2913 (2010)

    Article  CAS  Google Scholar 

  30. Napoli, C. highly branched phenotype of the petunia dad1–1 mutant is reversed by grafting. Plant Physiol. 111, 27–37 (1996)

    Article  MathSciNet  CAS  Google Scholar 

  31. Zhang, X., Nakamura, I. & Mii, M. Molecular evidence for progenitorial species of garden petunias using polymerase chain reaction–restriction fragment length polymorphism analysis of the Chs-j gene. HortScience 43, 300–303 (2008)

    Article  Google Scholar 

  32. Meyer, A., Eskandari, S., Grallath, S. & Rentsch, D. AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana. J. Biol. Chem. 281, 7197–7204 (2006)

    Article  CAS  Google Scholar 

  33. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000)

    Article  CAS  Google Scholar 

  34. Becker, D., Kemper, E., Schell, J. & Masterson, R. New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol. Biol. 20, 1195–1197 (1992)

    Article  CAS  Google Scholar 

  35. Cervera, M. Histochemical and fluorometric assays for uidA (GUS) gene detection. Methods Mol. Biol. 286, 203–213 (2004)

    Google Scholar 

  36. Wesley, S. V. et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581–590 (2001)

    Article  CAS  Google Scholar 

  37. Lutke, W. K. Petunia (Petunia hybrida). Methods Mol. Biol. 344, 339–349 (2006)

    CAS  PubMed  Google Scholar 

  38. Harrison, S. et al. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2, 19 (2006)

    Article  Google Scholar 

  39. Vandenbussche, M. & Gerats, T. TE-based mutagenesis systems in plants: a gene family approach. Methods Mol. Biol. 260, 115–127 (2004)

    CAS  PubMed  Google Scholar 

  40. Van den Broeck, D. et al. Transposon display identifies individual transposable elements in high copy number lines. Plant J. 13, 121–129 (1998)

    CAS  PubMed  Google Scholar 

  41. Vierheilig, H., Coughlan, A., Wyss, U. & Piche, Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64, 5004–5007 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500 (1980)

    Article  Google Scholar 

  43. Feddermann, N. et al. The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. Plant J. 64, 470–481 (2010)

    Article  CAS  Google Scholar 

  44. Nagahashi, G. & Douds, D. D. Rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi. Biotechnol. Techniques 13, 893–897 (1999)

    Article  CAS  Google Scholar 

  45. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001)

    Article  CAS  Google Scholar 

  46. Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N. Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85 (2006)

    Article  Google Scholar 

  47. Liu, W. et al. Strigolactone biosynthesis in Medicago trunculata requires the symbiotic GRAS-TYPE transcription factors NSP1 and NSP2. Plant Cell 23, 3853–3865 (2011)

    Article  CAS  Google Scholar 

  48. Snowden, K. C. & Napoli, C. A. A quantitative study of lateral branching in petunia. Funct. Plant Biol. 30, 987–994 (2003)

    Article  Google Scholar 

  49. Arai, M. et al. ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res. 32, 390–393 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We kindly thank the following: C. Gübeli for technical assistance; and T. Gerats, S. Hörtensteiner, A. Osbourne, P. Schläpfer and C. Beveridge for comments. This study was funded by the Swiss National Foundation within the NCCR-Plant Survival (project ‘ABC transporters involved in signaling’) and by The Netherlands Organization for Scientific Research (NWO; VICI grant 865.06.002 and Equipment grant 834.08.001to H.J.B.). H.J.B. was co-financed by the Centre for BioSystems Genomics (CBSG).

Author information

Authors and Affiliations

Authors

Contributions

T.K. wrote the manuscript, designed the project and carried out most of the experiments. W.K. and R.B. carried out the P. hybrida strigolactone analysis and the P. ramosa biossays. J.S. performed the quantitative PCR with reverse transcription assays and the transport assays. J.S. and M.S. performed branching and GUS trials. L.B. analysed the PDR1-OE lines. J.B.B. sectioned material. D.R. investigated arbuscular mycorrhizal morphology. H.J.B. supervised the analytical part of the project. E.M. conceived and supervised the project. D.R., E.M., J.S., W.K. and H.J.B. assisted in editing the manuscript.

Corresponding author

Correspondence to Tobias Kretzschmar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8, Supplementary Table 1 and additional references. (PDF 6002 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzschmar, T., Kohlen, W., Sasse, J. et al. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483, 341–344 (2012). https://doi.org/10.1038/nature10873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10873

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing