Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An oxygenase that forms and deoxygenates toxic epoxide

Abstract

Catabolism may give rise to toxic intermediates that compromise cell vitality, such as epoxide formation in the recently elucidated and apparently universal bacterial coenzyme A (CoA)-dependent degradation of phenylacetic acid1. This compound is central to the catabolism of a variety of aromatics, such as phenylalanine, lignin-related compounds or environmental contaminants2,3. The key phenylacetyl-CoA monooxygenase (epoxidase) of the pathway, PaaABCE1,4,5, is also connected to the production of various primary and secondary metabolites6,7,8,9, as well as to the virulence of certain pathogens1,10,11. However, the enzyme complex has so far not been investigated in detail. Here we characterize the bacterial multicomponent monooxygenase PaaABCE that, surprisingly, not only transforms phenylacetyl-CoA into its ring-1,2-epoxide, but also mediates the NADPH-dependent removal of the epoxide oxygen, regenerating phenylacetyl-CoA with formation of water. We provide evidence for a catalytic di-iron centre that is probably the key to the unprecedented deoxygenation of an organic compound by an oxygenase. Presumably, the bifunctionality is vital to avoid toxic intracellular epoxide levels if the subsequent catabolic steps are impeded. Our data suggest that detoxification is assisted by two thioesterases (PaaI and PaaY) forming non-reactive breakdown products. Hence, PaaABCE may harbour an intrinsic escape mechanism from its own toxic product and represents the archetype of a bifunctional oxygenase/deoxygenase. Analogous reactions may possibly be catalysed by other di-iron epoxidases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of reactions and proposed salvage reactions of phenylacetate degradation.
Figure 2: PaaABCE is a bifunctional monooxygenase/deoxygenase.
Figure 3: Simplified scheme of proposed reactions catalysed by PaaABCE and states of the catalytic di-iron centre.

Similar content being viewed by others

Accession codes

Data deposits

For E. coli K12, the NCBI database accession numbers are as follows: PaaY, NP_415918.1; PaaI, NP_415914.1. For Pseudomonas sp. strain Y2, the EMBL database numbers are as follows: PaaA, CAD76929.1; PaaB, CAD76932.1; PaaC, CAD76933.1; PaaD, CAD76935.1; PaaE, CAD76937.1.

References

  1. Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl Acad. Sci. USA 107, 14390–14395 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luengo, J. M., Garcia, J. L. & Olivera, E. R. The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol. Microbiol. 39, 1434–1442 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Ismail, W. et al. Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Eur. J. Biochem. 270, 3047–3054 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Grishin, A. M. et al. Structural and functional studies of the Escherichia coli phenylacetyl-CoA monooxygenase complex. J. Biol. Chem. 286, 10735–10743 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fernández, C., Ferrandez, A., Minambres, B., Diaz, E. & Garcia, J. L. Genetic characterization of the phenylacetyl-coenzyme A oxygenase from the aerobic phenylacetic acid degradation pathway of Escherichia coli. Appl. Environ. Microbiol. 72, 7422–7426 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Teufel, R. et al. Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point. J. Biol. Chem. 286, 11021–11034 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geng, H. & Belas, R. Expression of tropodithietic acid biosynthesis is controlled by a novel autoinducer. J. Bacteriol. 192, 4377–4387 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thiel, V. et al. Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine Roseobacter clade. Org. Biomol. Chem. 8, 234–246 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Moore, B. S. et al. Biosynthetic studies of omega-cycloheptyl fatty acids in Alicyclobacillus cycloheptanicus. Formation of cycloheptanecarboxylic acid from phenylacetic acid. J. Org. Chem. 62, 2173–2185 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Law, R. J. et al. A functional phenylacetic acid catabolic pathway is required for full pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans host model. J. Bacteriol. 190, 7209–7218 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hamlin, J. N., Bloodworth, R. A. & Cardona, S. T. Regulation of phenylacetic acid degradation genes of Burkholderia cenocepacia K56–2. BMC Microbiol. 9, 222 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khomyakova, M., Bükmez, O., Thomas, L. K., Erb, T. J. & Berg, I. A. A methylaspartate cycle in haloarchaea. Science 331, 334–337 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Leahy, J. G., Batchelor, P. J. & Morcomb, S. M. Evolution of the soluble diiron monooxygenases. FEMS Microbiol. Rev. 27, 449–479 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Nordlund, P. & Eklund, H. Di-iron-carboxylate proteins. Curr. Opin. Struct. Biol. 5, 758–766 (1995)

    Article  CAS  PubMed  Google Scholar 

  15. Rather, L. J., Knapp, B., Haehnel, W. & Fuchs, G. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J. Biol. Chem. 285, 20615–20624 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rather, L. J. et al. Structure and mechanism of the diiron benzoyl-coenzyme A epoxidase BoxB. J. Biol. Chem. 286, 29241–29248 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosenzweig, A. C., Frederick, C. A., Lippard, S. J. & Nordlund, P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537–543 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Lee, S. K., Nesheim, J. C. & Lipscomb, J. D. Transient intermediates of the methane monooxygenase catalytic cycle. J. Biol. Chem. 268, 21569–21577 (1993)

    CAS  PubMed  Google Scholar 

  19. Rosenzweig, A. C., Nordlund, P., Takahara, P. M., Frederick, C. A. & Lippard, S. J. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chem. Biol. 2, 409–418 (1995)

    Article  CAS  PubMed  Google Scholar 

  20. Shu, L. et al. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275, 515–518 (1997)

    Article  CAS  PubMed  Google Scholar 

  21. Rowe, G. T., Rybak-Akimova, E. V. & Caradonna, J. P. Unraveling the reactive species of a functional non-heme iron monooxygenase model using stopped-flow UV-vis spectroscopy. Inorg. Chem. 46, 10594–10606 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Rowe, G. T., Rybak-Akimova, E. V. & Caradonna, J. P. Heterolytic cleavage of peroxide by a diferrous compound generates metal-based intermediates identical to those observed with reactions utilizing oxygen-atom-donor molecules. Chemistry 14, 8303–8311 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Phillips, D. H. & Farmer, P. B. Evidence for DNA and protein binding by styrene and styrene oxide. Crit. Rev. Toxicol. 24, S35–S46 (1994)

    Article  CAS  PubMed  Google Scholar 

  24. Park, J. B. et al. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol. Bioeng. 95, 501–512 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chem. Biol. 5, 593–599 (2009)

    Article  CAS  Google Scholar 

  26. Fuhrer, T. & Sauer, U. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J. Bacteriol. 191, 2112–2121 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song, F. et al. Structure, function, and mechanism of the phenylacetate pathway hot dog-fold thioesterase PaaI. J. Biol. Chem. 281, 11028–11038 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Johansson, A. J., Noack, H., Siegbahn, P. E., Xue, G. & Que, L., Jr Observed enhancement of the reactivity of a biomimetic diiron complex by the addition of water — mechanistic insights from theoretical modeling. Dalton Trans. 6741–6750 (2009)

  29. Xue, G., De Hont, R., Munck, E. & Que, L., Jr Million-fold activation of the [Fe2(μ-O)2] diamond core for C–H bond cleavage. Nature Chem. 2, 400–405 (2010)

    Article  ADS  CAS  Google Scholar 

  30. Gallagher, S. C., Cammack, R. & Dalton, H. Alkene monooxygenase from Nocardia corallina B-276 is a member of the class of dinuclear iron proteins capable of stereospecific epoxygenation reactions. Eur. J. Biochem. 247, 635–641 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. Erb, T. J. et al. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc. Natl Acad. Sci. USA 104, 10631–10636 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erb, T. J., Ismail, W. & Fuchs, G. Phenylacetate metabolism in thermophiles: characterization of phenylacetate-CoA ligase, the initial enzyme of the hybrid pathway in Thermus thermophilus. Curr. Microbiol. 57, 27–32 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  35. Ramos-Vera, W. H., Weiss, M., Strittmatter, E., Kockelkorn, D. & Fuchs, G. Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota. J. Bacteriol. 193, 1201–1211 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. Textor, S. et al. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch. Microbiol. 168, 428–436 (1997)

    Article  CAS  PubMed  Google Scholar 

  37. Beinert, H. & Thomson, A. J. Three-iron clusters in iron-sulfur proteins. Arch. Biochem. Biophys. 222, 333–361 (1983)

    Article  CAS  PubMed  Google Scholar 

  38. Teufel, R., Kung, J. W., Kockelkorn, D., Alber, B. E. & Fuchs, G. 3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales. J. Bacteriol. 191, 4572–4581 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  CAS  PubMed  Google Scholar 

  40. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Deutsche Forschungsgemeinschaft for support; V. Mascaraque, G. Heijman and W. Ismail for their contributions in the initial stage of this work; M. Voss, M. Weiß, I. Sachelaru and T. Spatzal for technical assistance; M. Müller and V. Brecht for mass spectrometry analysis; and I. Berg and H. Heider for critical comments.

Author information

Authors and Affiliations

Authors

Contributions

R.T. and T.F. performed research; R.T, T.F. and G.F designed research and analysed data; and R.T. and G.F. wrote the paper.

Corresponding author

Correspondence to Georg Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11, Supplementary Tables 1-4, a Supplementary Discussion and additional references. Supplementary Figure 11 shows PaaZ inhibition by the derivative and Supplementary Table 4 substrate specificity of thioesterases PaaI and PaaY. (PDF 2463 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teufel, R., Friedrich, T. & Fuchs, G. An oxygenase that forms and deoxygenates toxic epoxide. Nature 483, 359–362 (2012). https://doi.org/10.1038/nature10862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10862

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing