Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for iron piracy by pathogenic Neisseria

Abstract

Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA–transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB–transferrin complex by small-angle X-ray scattering and the TbpA–TbpB–transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the TbpA–(apo)hTF complex.
Figure 2: TbpA distorts the iron coordination site in the hTF C lobe by inserting a helix from extracellular loop three.
Figure 3: SAXS analysis of the N. meningitidis TbpB–(holo)hTF complex.
Figure 4: Analysis of the TbpA–TbpB–(holo)hTF triple complex by negative stain electron microscopy.
Figure 5: Mechanism for iron import.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors for TbpA–(apo)hTF, TbpA–(apo)hTF C lobe, diferric hTF, apo-hTF C lobe and TbpB are deposited in the Protein Data Bank under accession codes 3V8X, 3V89, 3V83, 3SKP and 3V8U, respectively.

References

  1. Deasy, A. & Read, R. C. Challenges for development of meningococcal vaccines in infants and children. Expert Rev. Vaccines 10, 335–343 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention. Cephalosporin susceptibility among Neisseria gonorrhoeae isolates—United States, 2000–2010. Morbid. Mortal. Weekly Rep. 60, 873–877 (2011)

  3. Grifantini, R. et al. Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc. Natl Acad. Sci. USA 100, 9542–9547 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boulton, I. C. et al. Transferrin-binding protein B isolated from Neisseria meningitidis discriminates between apo and diferric human transferrin. Biochem. J. 334, 269–273 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krell, T. et al. Insight into the structure and function of the transferrin receptor from Neisseria meningitidis using microcalorimetric techniques. J. Biol. Chem. 278, 14712–14722 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, J. E., Sparling, P. F. & Cornelissen, C. N. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J. Bacteriol. 176, 3162–3170 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Irwin, S. W., Averil, N., Cheng, C. Y. & Schryvers, A. B. Preparation and analysis of isogenic mutants in the transferrin receptor protein genes, tbpA and tbpB, from Neisseria meningitidis. Mol. Microbiol. 8, 1125–1133 (1993)

    Article  CAS  PubMed  Google Scholar 

  9. Rokbi, B. et al. Evaluation of recombinant transferrin-binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains. Infect. Immun. 65, 55–63 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weynants, V. E. et al. Additive and synergistic bactericidal activity of antibodies directed against minor outer membrane proteins of Neisseria meningitidis. Infect. Immun. 75, 5434–5442 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Price, G. A., Masri, H. P., Hollander, A. M., Russell, M. W. & Cornelissen, C. N. Gonococcal transferrin binding protein chimeras induce bactericidal and growth inhibitory antibodies in mice. Vaccine 25, 7247–7260 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yost-Daljev, M. K. & Cornelissen, C. N. Determination of surface-exposed, functional domains of gonococcal transferrin-binding protein A. Infect. Immun. 72, 1775–1785 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noto, J. M. & Cornelissen, C. N. Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae. Infect. Immun. 76, 1960–1969 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wally, J. et al. The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J. Biol. Chem. 281, 24934–24944 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. Cornelissen, C. N., Biswas, G. D. & Sparling, P. F. Expression of gonococcal transferrin-binding protein 1 causes Escherichia coli to bind human transferrin. J. Bacteriol. 175, 2448–2450 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schryvers, A. B. & Morris, L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol. Microbiol. 2, 281–288 (1988)

    Article  CAS  PubMed  Google Scholar 

  17. Stokes, R. H., Oakhill, J. S., Joannou, C. L., Gorringe, A. R. & Evans, R. W. Meningococcal transferrin-binding proteins A and B show cooperation in their binding kinetics for human transferrin. Infect. Immun. 73, 944–952 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schryvers, A. B. & Gonzalez, G. C. Comparison of the abilities of different protein sources of iron to enhance Neisseria meningitidis infection in mice. Infect. Immun. 57, 2425–2429 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Calmettes, C. et al. Structural variations within the transferrin binding site on transferrin-binding protein B, TbpB. J. Biol. Chem. 286, 12683–12692 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moraes, T. F., Yu, R. H., Strynadka, N. C. & Schryvers, A. B. Insights into the bacterial transferrin receptor: the structure of transferrin-binding protein B from Actinobacillus pleuropneumoniae. Mol. Cell 35, 523–533 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Cornelissen, C. N., Anderson, J. E. & Sparling, P. F. Characterization of the diversity and the transferrin-binding domain of gonococcal transferrin-binding protein 2. Infect. Immun. 65, 822–828 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Silva, L. P. et al. Conserved interaction between transferrin and transferrin-binding proteins from porcine pathogens. J. Biol. Chem. 286, 21353–21360 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mason, A. B. et al. Expression, purification, and characterization of authentic monoferric and apo-human serum transferrins. Protein Expr. Purif. 36, 318–326 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Svergun, D. I., Petoukhov, M. V. & Koch, M. H. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Halbrooks, P. J. et al. Investigation of the mechanism of iron release from the C-lobe of human serum transferrin: mutational analysis of the role of a pH sensitive triad. Biochemistry 42, 3701–3707 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Steere, A. N., Byrne, S. L., Chasteen, N. D. & Mason, A. B. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochim. Biophys.. Actahttp://dx.doi.org/10.1016/j.bbagen.2011.06.003 (2011)

  27. Cheng, Y., Zak, O., Aisen, P., Harrison, S. C. & Walz, T. Structure of the human transferrin receptor-transferrin complex. Cell 116, 565–576 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Eckenroth, B. E., Steere, A. N., Chasteen, N. D., Everse, S. J. & Mason, A. B. How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH. Proc. Natl Acad. Sci. USA 108, 13089–13094 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hobbs, M. M. et al. Experimental gonococcal infection in male volunteers: cumulative experience with Neisseria gonorrhoeae strains FA1090 and MS11mkC. Front. Microbiol. 2, 123 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Scarselli, M. et al. Rational design of a meningococcal antigen inducing broad protective immunity. Sci. Transl. Med. 3, 91ra62 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. Zak, O. & Aisen, P. A new method for obtaining human transferrin C-lobe in the native conformation: preparation and properties. Biochemistry 41, 1647–1653 (2002)

    Article  CAS  PubMed  Google Scholar 

  32. Steere, A. N. et al. Properties of a homogeneous C-lobe prepared by introduction of a TEV cleavage site between the lobes of human transferrin. Protein Expr. Purif. 72, 32–41 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  35. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  36. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  PubMed  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  38. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D 60, 2210–2221 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. Petoukhov, M. V. & Svergun, D. I. Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr. Opin. Struct. Biol. 17, 562–571 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. Svergun, O. & Genkina, O. A. The dependence of the dynamics of the extinction of a temporary connection on the recognizability of a reinforcing stimulus [in Russian]. Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova 41, 700–707 (1991)

    PubMed  Google Scholar 

  43. Volkov, V. V. & Svergun, D. I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Cryst. 36, 860–864 (2003)

    Article  CAS  Google Scholar 

  44. Shaikh, T. R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nature Protocols 3, 1941–1974 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ludtke, S. J. 3-D structures of macromolecules using single-particle analysis in EMAN. Methods Mol. Biol. 673, 157–173 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

  48. Gumbart, J., Wiener, M. C. & Tajkhorshid, E. Coupling of calcium and substrate binding through loop alignment in the outer-membrane transporter BtuB. J. Mol. Biol. 393, 1129–1142 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sotomayor, M. & Schulten, K. Single-molecule experiments in vitro and in silico. Science 316, 1144–1148 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Gumbart, J., Wiener, M. C. & Tajkhorshid, E. Mechanics of force propagation in TonB-dependent outer membrane transport. Biophys. J. 93, 496–504 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gille, C. & Frommel, C. STRAP: editor for STRuctural Alignments of Proteins. Bioinformatics 17, 377–378 (2001)

    Article  CAS  PubMed  Google Scholar 

  52. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.N., N.C.E., M.O., E.B. and S.K.B. are supported by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases. M.O. was initially funded by an EPSRC Research Committee Studentship awarded to S.K.B. and R.W.E. N.M. and A.C.S. are supported by the Intramural Research Program of the NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases. A.B.M. was supported in part by USPHS grant R01-DK21739. A.N.S. is funded by an AHA Predoctoral Fellowship (10PRE4200010). E.T. acknowledges NIH support by R01-GM086749, U54-GM087519 and P41-RR05969. All the simulations were performed using TeraGrid resources (MCA06N060). We thank the respective staffs at the Southeast Regional Collaborative Access Team (SER-CAT) and General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) beamlines at the Advanced Photon Source, Argonne National Laboratory for their assistance during data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 (SER-CAT), and by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract No. DE-AC02-06CH11357 (GM/CA-CAT). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program.

Author information

Authors and Affiliations

Authors

Contributions

N.N., N.C.E., M.O. and S.K.B. expressed, purified and crystallized TbpA, TbpB and various hTFs. N.N. solved all crystal structures and the SAXS structure and analysed all data. A.B.M. and A.N.S. designed and purified apo-hTF, holo-hTF, hTF–FeN and hTF–FeC for binding experiments with TbpA and TbpB; they also expressed and purified hTF C lobe for the corresponding structure (PDB code 3SKP). P.A. and O.Z. expressed and purified hTF C lobe for the TbpA–(apo)hTF C-lobe structure (PDB code 3V89). N.M. and A.C.S. designed, conducted and analysed EM experiments. E.T. and J.G. designed, conducted and analysed molecular dynamics simulations. E.B. participated in the data collection and analysis of the SAXS data. R.W.E., A.R.G. and S.K.B. conceived and designed the original project. N.N. and S.K.B. wrote the manuscript.

Corresponding author

Correspondence to Susan K. Buchanan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18 with legends, Supplementary Tables 1-4, full legends for Supplementary Movies 1-2 and additional references. (PDF 28815 kb)

Supplementary Movie 1

The movie shows the molecular dynamics simulation of the TbpA-TonB interaction (see Supplementary Information file for full legend). (MOV 19599 kb)

Supplementary Movie 2

The movie shows the iron import machinery from pathogenic Neisseria (see Supplementary Information file for full legend). (MOV 29868 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noinaj, N., Easley, N., Oke, M. et al. Structural basis for iron piracy by pathogenic Neisseria. Nature 483, 53–58 (2012). https://doi.org/10.1038/nature10823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10823

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing