Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA breaks and chromosome pulverization from errors in mitosis

Abstract

The involvement of whole-chromosome aneuploidy in tumorigenesis is the subject of debate, in large part because of the lack of insight into underlying mechanisms. Here we identify a mechanism by which errors in mitotic chromosome segregation generate DNA breaks via the formation of structures called micronuclei. Whole-chromosome-containing micronuclei form when mitotic errors produce lagging chromosomes. We tracked the fate of newly generated micronuclei and found that they undergo defective and asynchronous DNA replication, resulting in DNA damage and often extensive fragmentation of the chromosome in the micronucleus. Micronuclei can persist in cells over several generations but the chromosome in the micronucleus can also be distributed to daughter nuclei. Thus, chromosome segregation errors potentially lead to mutations and chromosome rearrangements that can integrate into the genome. Pulverization of chromosomes in micronuclei may also be one explanation for ‘chromothripsis’ in cancer and developmental disorders, where isolated chromosomes or chromosome arms undergo massive local DNA breakage and rearrangement.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micronuclei from lagging chromosomes develop DNA breaks.
Figure 2: DNA breaks in a HAC targeted to a micronucleus.
Figure 3: DNA damage in micronuclei results from aberrant DNA replication.
Figure 4: Defective MCM2-7 complex recruitment, DNA damage response and nucleocytoplasmic transport in micronuclei.
Figure 5: The fate of chromosomes in micronuclei.

Similar content being viewed by others

References

  1. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet. http://dx.doi.org/10.1038/nrg3123 (in the press)

  2. Weaver, B. A. & Cleveland, D. W. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res. 67, 10103–10105 (2007)

    Article  CAS  Google Scholar 

  3. Schvartzman, J. M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nature Rev. Cancer 10, 102–115 (2010)

    Article  CAS  Google Scholar 

  4. Ricke, R. M., van Ree, J. H. & van Deursen, J. M. Whole chromosome instability and cancer: a complex relationship. Trends Genet. 24, 457–466 (2008)

    Article  CAS  Google Scholar 

  5. Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25–36 (2007)

    Article  CAS  Google Scholar 

  6. Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9–23 (2007)

    Article  CAS  Google Scholar 

  7. Baker, D. J., Jin, F., Jeganathan, K. B. & van Deursen, J. M. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 16, 475–486 (2009)

    Article  CAS  Google Scholar 

  8. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim. Biophys. Acta 1786, 32–40 (2008)

    CAS  PubMed  Google Scholar 

  10. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Terradas, M., Martin, M., Tusell, L. & Genesca, A. Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat. Res. 705, 60–67 (2010)

    Article  CAS  Google Scholar 

  12. Gisselsson, D. et al. Abnormal nuclear shape in solid tumors reflects mitotic instability. Am. J. Pathol. 158, 199–206 (2001)

    Article  CAS  Google Scholar 

  13. Thompson, S. L. & Compton, D. A. Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc. Natl Acad. Sci. USA 108, 17974–17978 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Hoffelder, D. R. et al. Resolution of anaphase bridges in cancer cells. Chromosoma 112, 389–397 (2004)

    Article  Google Scholar 

  15. Géraud, G. et al. Three-dimensional organization of micronuclei induced by colchicine in PtK1 cells. Exp. Cell Res. 181, 27–39 (1989)

    Article  Google Scholar 

  16. Cimini, D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol. 153, 517–528 (2001)

    Article  CAS  Google Scholar 

  17. Dalton, W. B., Nandan, M. O., Moore, R. T. & Yang, V. W. Human cancer cells commonly acquire DNA damage during mitotic arrest. Cancer Res. 67, 11487–11492 (2007)

    Article  CAS  Google Scholar 

  18. Quignon, F. et al. Sustained mitotic block elicits DNA breaks: one-step alteration of ploidy and chromosome integrity in mammalian cells. Oncogene 26, 165–172 (2007)

    Article  CAS  Google Scholar 

  19. Orth, J. D., Loewer, A., Lahav, G. & Mitchison, T. J. Prolonged mitotic arrest induces partial activation of apoptosis, DNA damage and p53 activation. Mol. Biol. . Cellhttp://dx.doi.org/10.1091/mbc.E11-09-0781 (2011)

  20. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998)

    Article  CAS  Google Scholar 

  21. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992)

    Article  CAS  Google Scholar 

  22. Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988)

    Article  CAS  Google Scholar 

  23. Thompson, S. L. & Compton, D. A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188, 369–381 (2010)

    Article  CAS  Google Scholar 

  24. Li, M. et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc. Natl Acad. Sci. USA 107, 14188–14193 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nature Rev. Mol. Cell Biol. 11, 208–219 (2010)

    Article  CAS  Google Scholar 

  26. Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004)

    Article  CAS  Google Scholar 

  27. DeLuca, J. G., Moree, B., Hickey, J. M., Kilmartin, J. V. & Salmon, E. D. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J. Cell Biol. 159, 549–555 (2002)

    Article  CAS  Google Scholar 

  28. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008)

    Article  CAS  Google Scholar 

  29. Binz, S. K., Sheehan, A. M. & Wold, M. S. Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair 3, 1015–1024 (2004)

    Article  CAS  Google Scholar 

  30. O’Keefe, R. T., Henderson, S. C. & Spector, D. L. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J. Cell Biol. 116, 1095–1110 (1992)

    Article  Google Scholar 

  31. DePamphilis, M. L. & Bell, S. D. Genome Duplication (Garland Science, 2011)

    Google Scholar 

  32. Dimitrova, D. S., Prokhorova, T. A., Blow, J. J., Todorov, I. T. & Gilbert, D. M. Mammalian nuclei become licensed for DNA replication during late telophase. J. Cell Sci. 115, 51–59 (2002)

    Article  CAS  Google Scholar 

  33. Mendez, J. & Stillman, B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol. Cell. Biol. 20, 8602–8612 (2000)

    Article  CAS  Google Scholar 

  34. Terradas, M., Martin, M., Tusell, L. & Genesca, A. DNA lesions sequestered in micronuclei induce a local defective-damage response. DNA Repair 8, 1225–1234 (2009)

    Article  CAS  Google Scholar 

  35. Obe, G., Beek, B. & Vaidya, V. G. The human leukocyte test system. III. Premature chromosome condensation from chemically and x-ray induced micronuclei. Mutat. Res. 27, 89–101 (1975)

    Article  CAS  Google Scholar 

  36. Johnson, R. T. & Rao, P. N. Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature 226, 717–722 (1970)

    Article  ADS  CAS  Google Scholar 

  37. Smith, L., Plug, A. & Thayer, M. Delayed replication timing leads to delayed mitotic chromosome condensation and chromosomal instability of chromosome translocations. Proc. Natl Acad. Sci. USA 98, 13300–13305 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Nichols, W. W., Levan, A., Aula, P. & Norrby, E. Chromosome damage associated with the measles virus in vitro . Hereditas 54, 101–118 (1965)

    Article  CAS  Google Scholar 

  39. Kato, H. & Sandberg, A. A. Chromosome pulverization in human binucleate cells following colcemid treatment. J. Cell Biol. 34, 35–45 (1967)

    Article  CAS  Google Scholar 

  40. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. USA 99, 12651–12656 (2002)

    Article  ADS  CAS  Google Scholar 

  41. Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011)

    Article  ADS  CAS  Google Scholar 

  42. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011)

    Article  MathSciNet  CAS  Google Scholar 

  43. Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011)

    Article  CAS  Google Scholar 

  44. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nature Rev. Genet. 10, 551–564 (2009)

    Article  CAS  Google Scholar 

  45. Sen, S., Hittelman, W. N., Teeter, L. D. & Kuo, M. T. Model for the formation of double minutes from prematurely condensed chromosomes of replicating micronuclei in drug-treated Chinese hamster ovary cells undergoing DNA amplification. Cancer Res. 49, 6731–6737 (1989)

    CAS  PubMed  Google Scholar 

  46. Bekker-Jensen, S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173, 195–206 (2006)

    Article  CAS  Google Scholar 

  47. Franz, C. et al. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 8, 165–172 (2007)

    Article  CAS  Google Scholar 

  48. Peterson-Roth, E., Reynolds, M., Quievryn, G. & Zhitkovich, A. Mismatch repair proteins are activators of toxic responses to chromium-DNA damage. Mol. Cell. Biol. 25, 3596–3607 (2005)

    Article  CAS  Google Scholar 

  49. Prasanth, S. G., Mendez, J., Prasanth, K. V. & Stillman, B. Dynamics of pre-replication complex proteins during the cell division cycle. Phil. Trans. R. Soc. Lond. B 359, 7–16 (2004)

    Article  CAS  Google Scholar 

  50. Dultz, E. et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180, 857–865 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. D’Andrea, M. E. McLaughlin, T. A. Rapoport, J. Walters and Pellman laboratory members for discussions and/or comments on the manuscript; L. Cameron for advice and help on microscopy; H. Li for irradiation of cells; M. Nitta and M. Hennessy for preliminary experiments; and V. Larionov, B. Stillman, J. Ellenberg, I. Mattaj, A. Miyawaki and T. Kuroda for reagents. D.P. was supported by the Howard Hughes Medical Institute and the NIH (GM083299); K.C. was a fellow of A*STAR Singapore; N.J.G. was a fellow of the Leukemia and Lymphoma Society; Y.P. and D.C. were funded by the NIH (1R01CA142698-01).

Author information

Authors and Affiliations

Authors

Contributions

D.P. conceived the project; K.C., N.J.G., R.D., A.B.L., D.C. and D.P. designed the experiments; D.P., K.C. and N.J.G. wrote the manuscript with edits from all authors; K.C. contributed Figs. 13, 4a, b and Supplementary Figs 2–8 with help from R.D. N.J.G. contributed Fig. 5j, Supplementary Fig. 12, Supplementary Table 1 and Supplementary Movies. R.D., E.V.I. and A.P. contributed Fig. 5a–i and Supplementary Figs 1 and 11; A.B.L. contributed Fig. 4c, d and Supplementary Figs 9 and 10; Y.P. and D.C. contributed Supplementary Fig. 3d; L.N. contributed Fig. 2a.

Corresponding author

Correspondence to David Pellman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-12 with legends, Supplementary References, Supplementary Table 1 and legends for Supplementary Movies 1-4. (PDF 11345 kb)

Supplementary Movie 1

The movie shows live-cell imaging of a MN in a U2OS cell expressing H2B-mRFP -see Supplementary Information file for full legend. (MOV 6862 kb)

Supplementary Movie 2

The movie shows live-cell imaging of a MN in a U2OS cell expressing H2B-mRFP -see Supplementary Information file for full legend. (MOV 9785 kb)

Supplementary Movie 3

The movie shows live-cell imaging of a MN in a U2OS cell expressing H2B-Kaede (corresponds to the cell shown in Figure 4g, top row) - see Supplementary Information file for full legend. (MOV 16698 kb)

Supplementary Movie 4

The movie shows live-cell imaging of a MN in a U2OS cell expressing H2B-Kaede (cell is located in the bottom-left portion of the video and corresponds to the cell shown in Figure 4g, bottom row) - see Supplementary Information file for full legend. (MOV 7152 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crasta, K., Ganem, N., Dagher, R. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012). https://doi.org/10.1038/nature10802

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10802

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer