Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clonal evolution in cancer

Abstract

Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex, with highly variable patterns of genetic diversity and resulting clonal architecture. Therapeutic intervention may destroy cancer clones and erode their habitats, but it can also inadvertently provide a potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer is the primary reason for this therapeutic failure, but it may also hold the key to more effective control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complexity of tissue ecosystems.
Figure 2: The branching architecture of evolution.
Figure 3: Divergent (branching) clonal evolution of cancer with topographical separation.
Figure 4: Topography of cancer subclones.
Figure 5: Selective pressure on cancer stem cells.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008).

    PubMed  Google Scholar 

  2. Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011).

    ADS  CAS  PubMed  Google Scholar 

  3. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976). The foundation paper that established the evolutionary theory of cancer.

    ADS  CAS  PubMed  Google Scholar 

  4. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006).

    CAS  Google Scholar 

  5. Pepper, J., Scott Findlay, C., Kassen, R., Spencer, S. & Maley, C. Cancer research meets evolutionary biology. Evol. Appl. 2, 62–70 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Greaves, M. Cancer: The Evolutionary Legacy (Oxford Univ. Press, 2000).

    Google Scholar 

  7. Sakr, W. A., Haas, G. P., Cassin, B. F., Pontes, J. E. & Crissman, J. D. The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J. Urol. 150, 379–385 (1993).

    CAS  PubMed  Google Scholar 

  8. Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reid, B. J., Li, X., Galipeau, P. C. & Vaughan, T. L. Barrett's oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nature Rev. Cancer 10, 87–101 (2010).

    CAS  Google Scholar 

  10. Klein, C. A. Parallel progression of primary tumours and metastases. Nature Rev. Cancer 9, 302–312 (2009).

    CAS  Google Scholar 

  11. Malaise, E. P., Chavaudra, N. & Tubiana, M. The relationship between growth rate, labelling index and histological type of human solid tumours. Eur. J. Cancer 9, 305–312 (1973).

    CAS  PubMed  Google Scholar 

  12. Tsai, A. G. et al. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135, 1130–1142 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bardelli, A. et al. Carcinogen-specific induction of genetic instability. Proc. Natl Acad. Sci. USA 98, 5770–5775 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and Darwinian selection in tumors. Trends Cell Biol. 9, M57–M60 (1999).

    CAS  PubMed  Google Scholar 

  15. Barcellos-Hoff, M. H., Park, C. & Wright, E. G. Radiation and the microenvironment – tumorigenesis and therapy. Nature Rev. Cancer 5, 867–875 (2005).

    CAS  Google Scholar 

  16. Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett's esophagus. Cancer Res. 64, 3414–3427 (2004).

    CAS  PubMed  Google Scholar 

  17. Tao, Y. et al. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc. Natl Acad. Sci. USA 108, 12042–12047 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bignell, G. R. et al. Signatures of mutation and selection in the cancer genome. Nature 463, 893–898 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Youn, A. & Simon, R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 27, 175–181 (2011).

    CAS  PubMed  Google Scholar 

  20. Greenman, C., Wooster, R., Futreal, P. A., Stratton, M. R. & Easton, D. F. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173, 2187–2198 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwartz, M., Zlotorynski, E. & Kerem, B. The molecular basis of common and rare fragile sites. Cancer Lett. 232, 13–26 (2006).

    CAS  PubMed  Google Scholar 

  23. Loeb, L. A. Human cancers express mutator phenotypes: origin, consequences and targeting. Nature Rev. Cancer 11, 450–457 (2011).

    CAS  Google Scholar 

  24. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genet 38, 787–793 (2006).

    CAS  PubMed  Google Scholar 

  25. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). This paper consolidates the common phenotypes that evolve in neoplastic cells of all types.

    Article  CAS  PubMed  Google Scholar 

  26. Siegmund, K. D., Marjoram, P., Woo, Y. J., Tavare, S. & Shibata, D. Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc. Natl Acad. Sci. USA 106, 4828–4833 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Varley, K. E., Mutch, D. G., Edmonston, T. B., Goodfellow, P. J. & Mitra, R. D. Intra-tumor heterogeneity of MLH1 promoter methylation revealed by deep single molecule bisulfite sequencing. Nucleic Acids Res. 37, 4603–4612 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aktipis, C. A., Kwan, V. S. Y., Johnson, K. A., Neuberg, S. L. & Maley, C. C. Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research. PLoS ONE 6, e261000 10.1371/journal.pone.0026100 (2011).

    Article  CAS  Google Scholar 

  29. Beerenwinkel, N. et al. Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 3, e225 (2007).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  30. de Visser, J. A. & Rozen, D. E. Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli . Genetics 172, 2093–2100 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Leedham, S. J. et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett's oesophagus. Gut 57, 1041–1048 (2008).

    CAS  PubMed  Google Scholar 

  32. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011). Single-cell sequencing revealed the clonal structure of two breast cancers.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011). Single-cell genetic analyses and xenografts revealed the clonal architecture within acute lymphoblastic leukaemia stem-cell populations and demonstrated repeated independent acquisition of copy number changes within the same neoplasm.

    ADS  CAS  PubMed  Google Scholar 

  34. Tsao, J. L. et al. Colorectal adenoma and cancer divergence. Evidence of multilineage progression. Am. J. Pathol. 154, 1815–1824 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genet. 38, 468–473 (2006).

    CAS  PubMed  Google Scholar 

  36. Sidransky, D. et al. Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355, 846–847 (1992).

    ADS  CAS  PubMed  Google Scholar 

  37. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gould, S. J. & Eldredge, N. Punctuated equilibrium comes of age. Nature 366, 223–227 (1993).

    ADS  CAS  PubMed  Google Scholar 

  39. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campbell, P. J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl Acad. Sci. USA 105, 13081–13086 (2008). Deep sequencing revealed rare (frequency <0.001) intermediate genotypes between the common clones in leukaemias (using immunoglobulin rearrangements as surrogate mutations).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nature Rev. Cancer 7, 834–846 (2007).

    CAS  Google Scholar 

  42. Isoda, T. et al. Immunologically silent cancer clone transmission from mother to offspring. Proc. Natl Acad. Sci. USA 106, 17882–17885 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  43. Welsh, J. S. Contagious cancer. Oncologist 16, 1–4 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nature Rev. Cancer 8, 56–61 (2008).

    CAS  Google Scholar 

  45. Bierie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Rev. Cancer 6, 506–520 (2006).

    CAS  PubMed  Google Scholar 

  46. Lathia, J. D., Heddleston, J. M., Venere, M. & Rich, J. N. Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 8, 482–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975). This paper identified natural selection as a driving force in carcinogenesis and identified tissue architecture as a cancer suppressor, and posited an immortal strand of DNA in tissue stem cells.

    ADS  CAS  PubMed  Google Scholar 

  48. Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).

    CAS  PubMed  Google Scholar 

  49. Chen, J., Sprouffske, K., Huang, Q. & Maley, C. C. Solving the puzzle of metastasis: the evolution of cell migration in neoplasms. PLoS ONE 6, e17933 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gilbert, L. A. & Hemann, M. T. DNA damage-mediated induction of a chemoresistant niche. Cell 143, 355–366 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sprouffske, K., Pepper, J. W. & Maley, C. C. Accurate reconstruction of the temporal order of mutations in neoplastic progression. Cancer Prev. Res. 4, 1135–1144 (2011).

    Google Scholar 

  55. Greaves, M. F., Maia, A. T., Wiemels, J. L. & Ford, A. M. Leukemia in twins: lessons in natural history. Blood 102, 2321–2333 (2003).

    CAS  PubMed  Google Scholar 

  56. Bateman, C. M. et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115, 3553–3558 (2010).

    CAS  PubMed  Google Scholar 

  57. Oosterhuis, J. W. & Looijenga, L. H. Testicular germ-cell tumours in a broader perspective. Nature Rev. Cancer 5, 210–222 (2005).

    CAS  Google Scholar 

  58. Grant, P. R. & Grant, B. R. How and Why Species Multiply (Princeton Univ. Press, 2008).

    MATH  Google Scholar 

  59. Durinck, S. et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov. 1, 137–143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gonzalez-Garcia, I., Sole, R. V. & Costa, J. Metapopulation dynamics and spatial heterogeneity in cancer. Proc. Natl Acad. Sci. USA 99, 13085–13089 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clark, J. et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27, 1993–2003 (2008).

    CAS  PubMed  Google Scholar 

  62. Navin, N. et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Allred, D. C. et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin. Cancer Res. 14, 370–378 (2008).

    CAS  PubMed  Google Scholar 

  64. Park, S. Y., Gonen, M., Kim, H. J., Michor, F. & Polyak, K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J. Clin. Invest. 120, 636–644 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Merlo, L. M. et al. A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev. Res. 3, 1388–1397 (2010).

    Google Scholar 

  66. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    CAS  PubMed  Google Scholar 

  67. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    ADS  CAS  PubMed  Google Scholar 

  68. Greaves, M. Cancer stem cells renew their impact. Nature Med. 17, 1046–1048 (2011).

    CAS  PubMed  Google Scholar 

  69. Rosen, J. M. & Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Greaves, M. Cancer stem cells: back to Darwin? Semin. Cancer Biol. 20, 65–70 (2010).

    PubMed  Google Scholar 

  71. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jamieson, C. H. et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    CAS  PubMed  Google Scholar 

  73. Akala, O. O. et al. Long-term haematopoietic reconstitution by Trp53−/−p164−/−p19Arf−/− multipotent progenitors. Nature 453, 228–232 (2008).

    ADS  CAS  PubMed  Google Scholar 

  74. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006).

    ADS  CAS  PubMed  Google Scholar 

  75. Olivier, M. & Taniere, P. Somatic mutations in cancer prognosis and prediction: lessons from TP53 and EGFR genes. Curr. Opin. Oncol. 23, 88–92 (2011).

    CAS  PubMed  Google Scholar 

  76. Mizuno, H., Spike, B. T., Wahl, G. M. & Levine, A. J. Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc. Natl Acad. Sci. USA 107, 22745–22750 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    CAS  PubMed  Google Scholar 

  78. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008). New xenograft methods revealed that cancer stem cells are common cell types in melanoma.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pece, S. et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62–73 (2010).

    CAS  PubMed  Google Scholar 

  80. Notta, F. et al. Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    ADS  CAS  PubMed  Google Scholar 

  81. Clappier, E. et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J. Exp. Med. 208, 653–661 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnol. 25, 1315–1321 (2007).

    CAS  Google Scholar 

  84. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS  PubMed  Google Scholar 

  85. Piccirillo, S. G. M. et al. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28, 1807–1811 (2009).

    CAS  PubMed  Google Scholar 

  86. Solit, D. & Sawyers, C. L. How melanomas bypass new therapy. Nature 468, 902–903 (2010).

    ADS  CAS  PubMed  Google Scholar 

  87. Goff, D. & Jamieson, C. Cycling toward elimination of leukemic stem cells. Cell Stem Cell 6, 296–297 (2010).

    CAS  PubMed  Google Scholar 

  88. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chin, L., Andersen, J. N. & Futreal, P. A. Cancer genomics: from discovery science to personalized medicine. Nature Med. 17, 297–303 (2011).

    CAS  PubMed  Google Scholar 

  90. Sawyers, C. L. Shifting paradigms: the seeds of oncogene addiction. Nature Med. 15, 1158–1161 (2009).

    CAS  PubMed  Google Scholar 

  91. Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro . Blood 99, 319–325 (2002).

    CAS  PubMed  Google Scholar 

  92. Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ashworth, A., Lord, C. J. & Reis-Filho, J. S. Genetic interactions in cancer progression and treatment. Cell 145, 30–38 (2011).

    CAS  PubMed  Google Scholar 

  94. Zhang, B. et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17, 427–442 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Duy, C. et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR–ABL1 kinase inhibition. Nature 473, 384–388 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pienta, K. J., McGregor, N., Axelrod, R. & Axelrod, D. E. Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments. Trans. Oncol. 1, 158–164 10.1593/tlo.08178 (2008).

    Article  Google Scholar 

  97. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    CAS  PubMed  Google Scholar 

  98. Bissell, M. J. & Hines, W. C. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Med. 17, 320–329 (2011).

    CAS  PubMed  Google Scholar 

  99. Wargo, A. R., Huijben, S., de Roode, J. C., Shepherd, J. & Read, A. F. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc. Natl Acad. Sci. USA 104, 19914–19919 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009). Dosing to maintain tumour size prolonged survival far longer than high-dose therapy in a mouse xenograft model.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research of M.G. is supported by Leukaemia & Lymphoma Research UK and The Kay Kendall Leukaemia Fund. The research of C.M. is supported by Research Scholar Grant #117209-RSG-09-163-01-CNE from the American Cancer Society and NIH grants P01 CA91955, U54 CA143803, R01 CA149566 and R01 CA140657. The authors thank C.Cooper and J.Clark for the use of the image in Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mel Greaves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greaves, M., Maley, C. Clonal evolution in cancer. Nature 481, 306–313 (2012). https://doi.org/10.1038/nature10762

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10762

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer