Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolic priming by a secreted fungal effector

Abstract

Maize smut caused by the fungus Ustilago maydis is a widespread disease characterized by the development of large plant tumours. U. maydis is a biotrophic pathogen that requires living plant tissue for its development and establishes an intimate interaction zone between fungal hyphae and the plant plasma membrane. U. maydis actively suppresses plant defence responses by secreted protein effectors1,2. Its effector repertoire comprises at least 386 genes mostly encoding proteins of unknown function1,3,4 and expressed exclusively during the biotrophic stage3. The U. maydis secretome also contains about 150 proteins with probable roles in fungal nutrition, fungal cell wall modification and host penetration as well as proteins unlikely to act in the fungal-host interface4 like a chorismate mutase. Chorismate mutases are key enzymes of the shikimate pathway and catalyse the conversion of chorismate to prephenate, the precursor for tyrosine and phenylalanine synthesis. Root-knot nematodes inject a secreted chorismate mutase into plant cells likely to affect development5,6. Here we show that the chorismate mutase Cmu1 secreted by U. maydis is a virulence factor. The enzyme is taken up by plant cells, can spread to neighbouring cells and changes the metabolic status of these cells through metabolic priming. Secreted chorismate mutases are found in many plant-associated microbes and might serve as general tools for host manipulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cmu1 has chorismate mutase activity, affects virulence and salicylic acid levels.
Figure 2: Cmu1 is translocated to plant cells and spreads to neighbouring tissue.
Figure 3: Model of Cmu1-mediated metabolic priming in infected maize tissue.

Similar content being viewed by others

References

  1. Doehlemann, G. et al. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 5, e1000290 (2009)

    Article  Google Scholar 

  2. Doehlemann, G. et al. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis . Plant J. 56, 181–195 (2008)

    Article  CAS  Google Scholar 

  3. Kamper, J. et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis . Nature 444, 97–101 (2006)

    Article  ADS  Google Scholar 

  4. Mueller, O. et al. The secretome of the maize pathogen Ustilago maydis . Fungal Genet. Biol. 45 (suppl. 1). S63–S70 (2008)

    Article  CAS  Google Scholar 

  5. Bekal, S., Niblack, T. L. & Lambert, K. N. A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Mol. Plant Microbe Interact. 16, 439–446 (2003)

    Article  CAS  Google Scholar 

  6. Doyle, E. A. & Lambert, K. N. Meloidogyne javanica chorismate mutase 1 alters plant cell development. Mol. Plant Microbe Interact. 16, 123–131 (2003)

    Article  CAS  Google Scholar 

  7. Guermeur, Y., Geourjon, C., Gallinari, P. & Deleage, G. Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 15, 413–421 (1999)

    Article  CAS  Google Scholar 

  8. Sasso, S., Ramakrishnan, C., Gamper, M., Hilvert, D. & Kast, P. Characterization of the secreted chorismate mutase from the pathogen Mycobacterium tuberculosis . FEBS J. 272, 375–389 (2005)

    Article  CAS  Google Scholar 

  9. Eberhard, J., Raesecke, H.-R., Schmid, J. & Amrhein, N. Cloning and expression in yeast of a higher plant chorismate mutase Molecular cloning, sequencing of the cDNA and characterization of the Arabidopsis thaliana enzyme expressed in yeast. FEBS Lett. 334, 233–236 (1993)

    Article  CAS  Google Scholar 

  10. Krappmann, S. et al. The aroC gene of Aspergillus nidulans codes for a monofunctional, allosterically regulated chorismate mutase. J. Biol. Chem. 274, 22275–22282 (1999)

    Article  CAS  Google Scholar 

  11. Mobley, E. M., Kunkel, B. N. & Keith, B. Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana . Gene 240, 115–123 (1999)

    Article  CAS  Google Scholar 

  12. Basse, C. W., Kolb, S. & Kahmann, R. A maize-specifically expressed gene cluster in Ustilago maydis . Mol. Microbiol. 43, 75–93 (2002)

    Article  CAS  Google Scholar 

  13. Doehlemann, G., Reissmann, S., Assmann, D., Fleckenstein, M. & Kahmann, R. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol. Microbiol. 81, 751–766 (2011)

    Article  CAS  Google Scholar 

  14. Skibbe, D. S., Doehlemann, G., Fernandes, J. & Walbot, V. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328, 89–92 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Bölker, M., Genin, S., Lehmler, C. & Kahmann, R. Genetic regulation of mating and dimorphism in Ustilago maydis . Can. J. Bot. 73, 320–325 (1995)

    Article  Google Scholar 

  16. Di Stasio, M., Brefort, T., Mendoza-Mendoza, A., Munch, K. & Kahmann, R. The dual specificity phosphatase Rok1 negatively regulates mating and pathogenicity in Ustilago maydis . Mol. Microbiol. 73, 73–88 (2009)

    Article  CAS  Google Scholar 

  17. Wille, A. C. &. Lucas W. J. Ultrastructural and histochemical studies on guard cells. Planta 160, 129–142 (1984)

    Article  CAS  Google Scholar 

  18. Mobley, E. M., Kunkel, B. N. & Keith, B. Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana . Gene 240, 115–123 (1999)

    Article  CAS  Google Scholar 

  19. Eberhard, J. et al. Cytosolic and plastidic chorismate mutase isozymes from Arabidopsis thaliana: molecular characterization and enzymatic properties. Plant J. 10, 815–821 (1996)

    Article  CAS  Google Scholar 

  20. Schnappauf, G., Lipscomb, W. N. & Braus, G. H. Separation of inhibition and activation of the allosteric yeast chorismate mutase. Proc. Natl Acad. Sci. USA 95, 2868–2873 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Schnappauf, G., Strater, N., Lipscomb, W. N. & Braus, G. H. A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions. Proc. Natl Acad. Sci. USA 94, 8491–8496 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Horst, R. J. et al. Ustilago maydis infection strongly alters organic nitrogen allocation in maize and stimulates productivity of systemic source leaves. Plant Physiol. 152, 293–308 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005)

    Article  CAS  Google Scholar 

  24. Sambrook, J. F. E. & Maniatis, T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1200 (1989)

    Google Scholar 

  25. Loubradou, G., Brachmann, A., Feldbrugge, M. & Kahmann, R. A homologue of the transcriptional repressor Ssn6p antagonizes cAMP signalling in Ustilago maydis . Mol. Microbiol. 40, 719–730 (2001)

    Article  CAS  Google Scholar 

  26. Bohlmann, R. Isolierung und Charakterisierung von filamentspezifisch exprimierten Genen aus Ustilago maydis. PhD thesis, Ludwig-Maximilian-Univ. München. (1996)

    Google Scholar 

  27. Gilchrist, D. G. C. & Conelly, J. A. Chorismate mutase from mung bean and sorghum. Methods Enzymol. 142, 450–463 (1987)

    Article  CAS  Google Scholar 

  28. Brachmann, A., Weinzierl, G., Kamper, J. & Kahmann, R. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis . Mol. Microbiol. 42, 1047–1063 (2001)

    Article  CAS  Google Scholar 

  29. Ueki, S., Lacroix, B., Krichevsky, A., Lazarowitz, S. G. & Citovsky, V. Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nature Protocols 4, 71–77 (2008)

    Article  Google Scholar 

  30. Doehlemann, G. et al. Establishment of compatibility in the Ustilago maydis/maize pathosystem. J. Plant Physiol. 165, 29–40 (2008)

    Article  CAS  Google Scholar 

  31. Shimada, Y., Ichinose, S., Sadr, A., Burrow, M. F. & Tagami, J. Localization of matrix metalloproteinases (MMPs-2, 8, 9 and 20) in normal and carious dentine. Aust. Dent. J. 54, 347–354 (2009)

    Article  CAS  Google Scholar 

  32. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008)

    Article  CAS  Google Scholar 

  33. Kaever, A. et al. MarVis: a tool for clustering and visualization of metabolic biomarkers. BMC Bioinformatics 10, 92 (2009)

    Article  Google Scholar 

  34. Pommerrenig, B. et al. Phloem-specific expression of yang cycle genes and identification of novel yang cycle enzymes in plantago and Arabidopsis . Plant Cell 23, 1904–1919 (2011)

    Article  CAS  Google Scholar 

  35. Naranjo, M. A. et al. Lithium treatment induces a hypersensitive-like response in tobacco. Planta 217, 417–424 (2003)

    Article  CAS  Google Scholar 

  36. Banuett, F. & Herskowitz, I. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc. Natl Acad. Sci. USA 86, 5878–5882 (1989)

    Article  ADS  CAS  Google Scholar 

  37. De Wit, P. J. G. M. & Spikman, G. Evidence for the occurence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiol. Plant Pathol. 21, 1–11 (1982)

    Article  Google Scholar 

  38. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protoc. 1, 2856–2860 (2006)

    Article  CAS  Google Scholar 

  39. Olsen, J. V. & Mann, M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci USA 101, 13417–13422 (2004)

    Article  ADS  CAS  Google Scholar 

  40. Mortensen, P. et al. MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J. Proteome Res. 9, 393–403 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to N. Amrhein and H.-U. Mösch for their comments on the manuscript. We thank B. Valent and C. H. Khang for alerting us to the fact that Magnaporthe grisea possesses a secreted chorismate mutase, and are grateful to M. Dickman for allowing us to cite his unpublished results. We thank T. Brefort, E. Mörschel, A. Kaever and M. Landesfeind for experimental support. We acknowledge advice by P. Kast, thank P. Schulze-Lefert for the Gateway-compatible plant transformation vectors, and D. Sicker for providing DIBOA and DIMBOA standards. We acknowledge technical assistance by R. Wissel, S. Löser, D. Vogel, F. Raths, G. Sowa, K. Bolte, M. Johannsen and P. Meyer. Our work was supported through DFG project DJ64/1-1, the collaborative research Center SFB593, and the LOEWE program of the State of Hesse.

Author information

Authors and Affiliations

Authors

Contributions

A.D., K.S., F.R., V.V., J.K., S.O., T.T., K.F., P.M., Y.-D.S., H.S., A.G. and B.M. designed and performed the wet bench experiments. All authors contributed to data analysis. R.K., A.D. and K.S. wrote the manuscript with input from all co-authors. R.K. directed the project.

Corresponding author

Correspondence to Regine Kahmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1- 24 with legends, Supplementary References and Supplementary Tables 1 and 3-8 (see separate file for Supplementary Table 2). (PDF 3189 kb)

Supplementary Table 2

This table shows the data matrix of 810 high quality marker candidates (ANOVA pVal<1x10-5) identified by metabolite fingerprinting by UPLC-ESI TOF-MS analysis in leaves of Zea maize 8 days post U. maydis infection. (XLS 632 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djamei, A., Schipper, K., Rabe, F. et al. Metabolic priming by a secreted fungal effector. Nature 478, 395–398 (2011). https://doi.org/10.1038/nature10454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10454

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing