Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Widespread iron-rich conditions in the mid-Proterozoic ocean

Abstract

The chemical composition of the ocean changed markedly with the oxidation of the Earth’s surface1, and this process has profoundly influenced the evolutionary and ecological history of life2,3. The early Earth was characterized by a reducing ocean–atmosphere system, whereas the Phanerozoic eon (less than 542 million years ago) is known for a stable and oxygenated biosphere conducive to the radiation of animals. The redox characteristics of surface environments during Earth’s middle age (1.8–1 billion years ago) are less well known, but it is generally assumed that the mid-Proterozoic was home to a globally sulphidic (euxinic) deep ocean2,3. Here we present iron data from a suite of mid-Proterozoic marine mudstones. Contrary to the popular model, our results indicate that ferruginous (anoxic and Fe2+-rich) conditions were both spatially and temporally extensive across diverse palaeogeographic settings in the mid-Proterozoic ocean, inviting new models for the temporal distribution of iron formations and the availability of bioessential trace elements during a critical window for eukaryotic evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron speciation and sulphur isotope data for mid-Proterozoic shales.
Figure 2: Summary of marine chemical conditions in the Precambrian.

Similar content being viewed by others

References

  1. Holland, H. D. Sedimentary mineral deposits and the evolution of Earth’s near-surface environments. Econ. Geol. 100, 1489–1509 (2005)

    Article  CAS  Google Scholar 

  2. Canfield, D. E. The early history of atmospheric oxygen: homage to Robert A. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Lyons, T. W., Anbar, A., Severmann, S., Scott, C. & Gill, B. Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annu. Rev. Earth Planet. Sci. 37, 507–534 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Lyons, T. W., Reinhard, C. T. & Scott, C. Redox redux. Geobiology 7, 489–494 (2009)

    Article  CAS  Google Scholar 

  6. Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean similar to 1.84 billion years ago. Nature 431, 173–177 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge. Science 297, 1137–1142 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Bekker, A. et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467–508 (2010)

    Article  CAS  Google Scholar 

  9. Wilson, J. P. et al. Geobiology of the late Paleoproterozoic Duck Creek Formation, Western Australia. Precambr. Res. 179, 135–149 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geosci. 3, 486–490 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011)

    Article  CAS  Google Scholar 

  12. Canfield, D. E. et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321, 949–952 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Johnston, D. T. et al. An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USA. Earth Planet. Sci. Lett. 290, 64–73 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Li, C. et al. A stratified redox model for the Ediacaran Ocean. Science 328, 80–83 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Swanson-Hysell, N. L. et al. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328, 608–611 (2010)

    Article  ADS  CAS  Google Scholar 

  16. Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Johnston, D. T. et al. Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochim. Cosmochim. Acta 72, 4278–4290 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Raiswell, R. Turbidite depositional influences on the diagenesis of Beecher’s Trilobite Bed and the Hunsrück Slate; sites of soft tissue pyritization. Am. J. Sci. 305, 105–129 (2008)

    Article  ADS  Google Scholar 

  20. Kendall, B., Creaser, R. A., Gordon, G. W. & Anbar, A. D. Re–Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim. Cosmochim. Acta 73, 2534–2558 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Shen, Y., Knoll, A. H. & Walter, M. R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423, 632–635 (2003)

    Article  ADS  CAS  Google Scholar 

  22. McGoldrick, P., Winefield, P., Bull, S., Selley, D. & Scott, R. Sequences, synsedimentary structures, and sub-basins: the where and when of SEDEX zinc systems in the southern McArthur Basin, Australia. Soc. Econ. Geol. Spec. Publ. 15, 1–23 (2010)

    Google Scholar 

  23. Lyons, T. W., Luepke, J. J., Schreiber, M. E. & Zieg, G. A. Sulfur geochemical constraints on Mesoproterozoic restricted marine deposition: lower Belt Supergroup, northwestern United States. Geochim. Cosmochim. Acta 64, 427–437 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nature Geosci. 3, 647–652 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A Late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Scott, C. et al. Late Archean euxinic conditions before the rise of atmospheric. Geology 39, 119–122 (2011)

    Article  ADS  CAS  Google Scholar 

  27. Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 457–460 (2008)

    ADS  Google Scholar 

  28. Bekker, A. et al. Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet. Sci. Lett. 271, 278–291 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Slack, J. F., Grenne, T., Bekker, A., Rouxel, O. J. & Lindberg, P. A. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 255, 243–256 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Kump, L. R. & Seyfried, W. E. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005)

    Article  ADS  CAS  Google Scholar 

  31. David, L. A. & Alm, E. J. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469, 93–96 (2011)

    Article  ADS  CAS  Google Scholar 

  32. Chu, X., Zhang, T., Zhang, Q. & Lyons, T. W. Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section, northern China: Implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochim. Cosmochim. Acta 71, 4668–4692 (2007)

    Article  ADS  CAS  Google Scholar 

  33. Gellatly, A. M. & Lyons, T. W. Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution. Geochim. Cosmochim. Acta 69, 3813–3829 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Emsbo, S. Bull and D. Winston for formative discussions, P. Fralick for constructive comments, and S. Bates and J. Owens for assistance with the analyses. This work was supported by funding from the National Science Foundation (NSF) Graduate Research Fellowship programme, Geological Society of America and American Philosophical Society, to N.J.P.; from the NSF Division of Earth Sciences, the NASA Exobiology Program and Astrobiology Institute and the UTAS Visiting Fellows programme to T.W.L.; from the Agouron Institute to T.W.L. and G.D.L; and from Natural Sciences and Engineering Research Council of Canada to A.B. P.McG. was supported through the Australian Research Council’s Centre of Excellence programme.

Author information

Authors and Affiliations

Authors

Contributions

P.McG., A.B., T.W.L., X.C., C.L. and N.J.P. collected samples, and P.McG., N.J.P., C.T.S. and C.L. analysed them. All authors were involved in the writing and the design and interpretations of this study.

Corresponding author

Correspondence to Timothy W. Lyons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary References, Supplementary Figure 1 with a legend and Supplementary Table 1. (PDF 2408 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planavsky, N., McGoldrick, P., Scott, C. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011). https://doi.org/10.1038/nature10327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10327

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing