Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy

Abstract

Electronic charges introduced in copper-oxide (CuO2) planes generate high-transition-temperature (Tc) superconductivity but, under special circumstances, they can also order into filaments called stripes1. Whether an underlying tendency towards charge order is present in all copper oxides and whether this has any relationship with superconductivity are, however, two highly controversial issues2,3. To uncover underlying electronic order, magnetic fields strong enough to destabilize superconductivity can be used. Such experiments, including quantum oscillations4,5,6 in YBa2Cu3Oy (an extremely clean copper oxide in which charge order has not until now been observed) have suggested that superconductivity competes with spin, rather than charge, order7,8,9. Here we report nuclear magnetic resonance measurements showing that high magnetic fields actually induce charge order, without spin order, in the CuO2 planes of YBa2Cu3Oy. The observed static, unidirectional, modulation of the charge density breaks translational symmetry, thus explaining quantum oscillation results, and we argue that it is most probably the same 4a-periodic modulation as in stripe-ordered copper oxides1. That it develops only when superconductivity fades away and near the same 1/8 hole doping as in La2−xBaxCuO4 (ref. 1) suggests that charge order, although visibly pinned by CuO chains in YBa2Cu3Oy, is an intrinsic propensity of the superconducting planes of high-Tc copper oxides.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-field NMR spectra of YBa2Cu3O6.54 (ortho II, p = 0.108).
Figure 2: Charge density modulations compatible with NMR spectra.
Figure 3: Slow spin fluctuations instead of spin order.
Figure 4: Phase diagram of underdoped YBa2Cu3Oy.

Similar content being viewed by others

References

  1. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995)

    Article  ADS  Google Scholar 

  2. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  CAS  ADS  Google Scholar 

  3. Lee, P. A. From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics. Rep. Prog. Phys. 71, 012501 (2008)

    Article  ADS  Google Scholar 

  4. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007)

    Article  CAS  ADS  Google Scholar 

  5. Sebastian, S. E., Harrison, N. & Lonzarich, G. G. Quantum oscillations in the high-Tc cuprates. Phil. Trans. R. Soc. A 369, 1687–1711 (2011)

    Article  CAS  ADS  Google Scholar 

  6. Ramshaw, B. J. et al. Angle dependence of quantum oscillations in YBa2Cu3O6. 59 shows free-spin behaviour of quasiparticles. Nature Phys. 7, 234–238 (2011)

    Article  CAS  ADS  Google Scholar 

  7. Chang, J. et al. Tuning competing orders in La2−xSrxCuO4 cuprate superconductors by the application of an external magnetic field. Phys. Rev. B 78, 104525 (2008)

    Article  ADS  Google Scholar 

  8. Haug, D. et al. Magnetic-field-enhanced incommensurate magnetic order in the underdoped high-temperature superconductor YBa2Cu3O6. 45 . Phys. Rev. Lett. 103, 017001 (2009)

    Article  CAS  ADS  Google Scholar 

  9. Millis, A. J. & Norman, M. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503(R) (2007)

    Article  ADS  Google Scholar 

  10. Yamani, Z. et al. Cu NMR study of detwinned single crystals of Ortho-II YBCO6.5. Physica C 405, 227–239 (2004)

    Article  CAS  ADS  Google Scholar 

  11. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007)

    Article  CAS  ADS  Google Scholar 

  12. LeBoeuf, D. et al. Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements. Phys. Rev. B 83, 054506 (2011)

    Article  ADS  Google Scholar 

  13. Laliberté, F. et al. Fermi-surface reconstruction by stripe order in cuprate superconductors. Preprint at 〈http://arxiv.org/abs/1102.0984〉 (2011)

  14. Ando, Y. et al. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)

    Article  ADS  Google Scholar 

  15. Vignolle, B. et al. Coherent three-dimensional Fermi surface in an underdoped cuprate superconductor. Preprint at 〈http://arxiv.org/abs/1107.5422〉 (2011)

  16. Ofer, R. & Keren, A. Nutation versus angular-dependent NQR spectroscopy and impact of underdoping on charge inhomogeneities in YBa2Cu3Oy . Phys. Rev. B 80, 224521 (2009)

    Article  ADS  Google Scholar 

  17. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    Article  CAS  ADS  Google Scholar 

  18. Hunt, A. W. et al. Glassy slowing of stripe modulation in (La,Eu,Nd)2−x(Sr,Ba)xCuO4: a 63Cu and 139La NQR study down to 350 mK. Phys. Rev. B 64, 134525 (2001)

    Article  ADS  Google Scholar 

  19. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6. 45 . Science 319, 597–600 (2008)

    Article  CAS  Google Scholar 

  20. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature 463, 519–522 (2010)

    Article  CAS  ADS  Google Scholar 

  21. Sun, K., Lawler, M. J. & Kim, E.-A. Spin-charge interplay in electronic liquid crystals: fluctuating spin stripe driven by charge nematic. Phys. Rev. Lett. 104, 106405 (2010)

    Article  ADS  Google Scholar 

  22. Vojta, M. Tendencies toward nematic order in YBa2Cu3O6+δ: uniform distortion vs. incipient charge stripes. Eur. Phys. J. Spec. Top. 188, 49–59 (2010)

    Article  CAS  Google Scholar 

  23. Curro, N. J. et al. Inhomogeneous low frequency spin dynamics in La1. 65Eu0. 2Sr0. 15CuO4 . Phys. Rev. Lett. 85, 642–645 (2000)

    Article  CAS  ADS  Google Scholar 

  24. Julien, M.-H. et al. Glassy spin freezing and NMR wipeout effect in the high-Tc superconductor La1. 90Sr0. 10CuO4. Critical discussion of the role of stripes. Phys. Rev. B 63, 144508 (2001)

    Article  ADS  Google Scholar 

  25. Harrison, N., McDonald, R. D. & Singleton, J. Cuprate Fermi orbits and Fermi arcs: the effect of short-range antiferromagnetic order. Phys. Rev. Lett. 99, 206406 (2007)

    Article  CAS  ADS  Google Scholar 

  26. Sachdev, S., Metlitski, M. A., Qi, Y. & Xu, C. Fluctuating spin density waves in metals. Phys. Rev. B 80, 155129 (2009)

    Article  ADS  Google Scholar 

  27. Coneri, F., Sanna, S., Zheng, K., Lord, J. & De Renzi, R. Magnetic states of lightly hole-doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy. Phys. Rev. B 81, 104507 (2010)

    Article  ADS  Google Scholar 

  28. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010)

    Article  CAS  ADS  Google Scholar 

  29. Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 468, 677–680 (2010)

    Article  CAS  ADS  Google Scholar 

  30. van der Klink, J. J. & Brom, H. B. Relation between susceptibility and Knight shift in La2NiO4. 17 and K2NiF4 by 61Ni NMR. Phys. Rev. B 81, 094419 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Proust for discussions and help at several stages of this project, and L. Taillefer and S. Kivelson for discussions. We also thank P. Bourges, P. Carretta, S. Chakraverty, W. Chen, P. Hirschfeld, D. LeBoeuf, A. Millis, M. Norman, B. Ramshaw, S. Sachdev, S. Sanna, M. Takigawa and B. Vignolle for communications. This work was supported by the Université Joseph Fourier – Grenoble I (pôle SMIng) and Euromagnet II.

Author information

Authors and Affiliations

Authors

Contributions

W.N.H., R.L. and D.A.B. prepared the samples. T.W., H.M, S.K. and M.-H.J. performed the experiments. S.K. and M.H. developed and operated the high-field NMR facility. H.M. created software for spectrometers and data analysis. T.W. and M.-H.J. analysed the data. C.B. provided conceptual advice and contributed to the planning of the project. M.H.J. wrote the paper and supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Marc-Henri Julien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Figures 1-15, Supplementary Tables 1-2 and additional references. (PDF 1797 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Mayaffre, H., Krämer, S. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477, 191–194 (2011). https://doi.org/10.1038/nature10345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10345

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing