Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock

Abstract

Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO2 emissions naturally1,2. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests3,4. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350–950 mg N kg−1) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30–70 mg N kg−1). Natural abundance N isotopes attribute this difference to rock-derived N: 15N/14N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Total nitrogen in rock, soil and foliage pools for SFM and BWDC forests.
Figure 2: Nitrogen isotope values of the rock–soil–plant system.
Figure 3: Carbon in above-ground tree biomass for forests growing on N-rich and N-poor lithology.

Similar content being viewed by others

References

  1. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991)

    Article  Google Scholar 

  2. Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Wang, Y. P. & Houlton, B. Z. Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon–climate feedback. Geophys. Res. Lett. 36 L24403 10.1029/2009gl041009 (2009)

    Article  ADS  Google Scholar 

  4. Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 848–850 (2007)

    Article  ADS  Google Scholar 

  5. Galloway, J. N. in Treatise on Geochemistry Vol. 8 (ed. W. H. Schlesinger ) 557–583 (Elsevier Pergamon, 2004)

    Google Scholar 

  6. Holloway, J. M. & Dahlgren, R. A. Nitrogen in rock: occurrences and biogeochemical implications. Glob. Biogeochem. Cycles 16 1118 10.1029/2002gb001862 (2002)

    Article  ADS  Google Scholar 

  7. Walvoord, M. A. et al. A reservoir of nitrate beneath desert soils. Science 302, 1021–1024 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Stevenson, F. J. On the presence of fixed ammonium in rocks. Science 130, 221–222 (1959)

    Article  ADS  CAS  Google Scholar 

  9. Cornwell, S. M. & Stone, E. L. Availability of nitrogen to plants in acid coal mine spoils. Nature 217, 768–769 (1968)

    Article  ADS  Google Scholar 

  10. Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976)

    Article  ADS  CAS  Google Scholar 

  11. Strathouse, S. M., Sposito, G., Sullivan, P. J. & Lund, L. J. Geologic nitrogen—a potential geochemical hazard in the San Joaquin Valley, California. J. Environ. Qual. 9, 54–60 (1980)

    Article  CAS  Google Scholar 

  12. Holloway, J. M., Dahlgren, R. A., Hansen, B. & Casey, W. H. Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature 395, 785–788 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Irwin, W., Wolfe, E. W., Blake, M. C. & Cunningham, C. G. Geologic map of the Pickett Peak quadrangle, Trinity County, California (US Geological Survey Map GQ-1111, 1974)

    Google Scholar 

  14. Dahlgren, R. A. Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock. Nature 368, 838–841 (1994)

    Article  ADS  CAS  Google Scholar 

  15. Aalto, K. R. in Geological Studies in the Klamath Mountains Province, California and Oregon. A Volume in Honor of William P. Irwin (eds Snoke, A. W. & Barnes, C. G. ) 451–464 (Geological Society of America Special Papers, vol. 410, 2006)

    Book  Google Scholar 

  16. Capo, R. C., Stewart, B. W. & Chadwick, O. A. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197–225 (1998)

    Article  ADS  CAS  Google Scholar 

  17. National Atmospheric Deposition Program . National Atmospheric Deposition Program 2008 Annual Summary (NADP Data Report 2009–01) (Univ. of Illinois at Urbana-Champaign, 2009)

    Google Scholar 

  18. Sollins, P., Grier, C. C., McCorison, F. M., Cromack, K. & Fogel, R. The internal element cycles of an old-growth Douglas-fir ecosystem in western Oregon. Ecol. Monogr. 50, 261–285 (1980)

    Article  Google Scholar 

  19. Cleveland, C. C. et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob. Biogeochem. Cycles 13, 623–645 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Li, Y. H. Distribution patterns of the elements in the ocean—a synthesis. Geochim. Cosmochim. Acta 55, 3223–3240 (1991)

    Article  ADS  CAS  Google Scholar 

  21. Timmer, V. R. & Stone, E. L. Comparative foliar analysis of young Balsam fir fertilized with nitrogen, phosphorus, potassium, and lime. Soil Sci. Soc. Am. J. 42, 125–130 (1978)

    Article  ADS  CAS  Google Scholar 

  22. Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17, 10.1029/2002gb001903. (2003)

  23. Martinelli, L. A. et al. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46, 45–65 (1999)

    CAS  Google Scholar 

  24. Houlton, B. Z. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Hobbie, E. A., Macko, S. A. & Williams, M. Correlations between foliar delta N-15 and nitrogen concentrations may indicate plant–mycorrhizal interactions. Oecologia 122, 273–283 (2000)

    Article  ADS  CAS  Google Scholar 

  26. LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008)

    Article  Google Scholar 

  27. Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geosci. 3, 13–17 (2010)

    Article  ADS  Google Scholar 

  28. Keeler-Wolf, T. Ecological surveys of Forest Service Research Natural Areas in California (Gen. Tech. Rep. PSW-125) (Pacific Southwest Research Station, Forest Service, 1990)

    Book  Google Scholar 

  29. Galloway, J. N., Schlesinger, W. H., Levy, H., II, Michaels, A. & Schnoor, J. L. Nitrogen fixation: anthropogenic enhancement–environmental response. Glob. Biogeochem. Cycles 9, 235–252 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Blatt, H. & Jones, R. L. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geol. Soc. Am. Bull. 86, 1085–1088 (1975)

    Article  ADS  Google Scholar 

  31. McKinney, C. R., McCrea, J. M., Epstein, S., Allen, H. A. & Urey, H. C. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev. Sci. Instrum. 21, 724–730 (1950)

    Article  ADS  CAS  Google Scholar 

  32. Blake, G. R. & Hartge, K. H. in Methods of Soil Analysis—Physical and Mineralogical Methods Vol. 9 (ed. Klute, A. ) Ch. 13 364–367 (Soil Science Society of America, 1986)

    Google Scholar 

  33. Eshel, G., Levy, G. J., Mingelgrin, U. & Singer, M. J. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68, 736–743 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Brauer, K. & Hahne, K. Methodical aspects of the N-15-analysis of Precambrian and Palaeozoic sediments rich in organic matter. Chem. Geol. 218, 361–368 (2005)

    Article  ADS  Google Scholar 

  35. Carlson, R. M. Automated seperaration and conductimetric determination of ammonia and dissolved carbon dioxide. Anal. Chem. 50, 1528–1531 (1978)

    Article  CAS  Google Scholar 

  36. R Development Core Team . R: A Language and Environment for Statistical Computing v.2.12.1 (R Foundation for Statistical Computing, 2010)

    Google Scholar 

  37. USDA Forest Service . 2007 Mendocino National Forest Vegetation Inventory (Pacific Southwest Research Station, 2010)

    Google Scholar 

  38. USDA Forest Service . 2007 Shasta–Trinity National Forest Vegetation Inventory (Pacific Southwest Research Station, 2010)

    Google Scholar 

  39. USDA Forest Service . 2007 Six Rivers National Forest Vegetation Inventory (Pacific Southwest Research Station, 2010)

    Google Scholar 

  40. Bishop, D. G. South-Fork Mountain Schist at Black-Butte and Cottonwood Creek, northern California. Geology 5, 595–599 (1977)

    Article  ADS  Google Scholar 

  41. Jayko, A. S. & Blake, M. C. Deformation of the eastern Franciscan belt, northern California. J. Struct. Geol. 11, 375–390 (1989)

    Article  ADS  Google Scholar 

  42. Lanphere, M. A., Blake, M. C. & Irwin, W. P. Early Cretaceous metamorphic age of South Fork Mountain Schist in northern Coast Ranges of California. Am. J. Sci. 278, 798–815 (1978)

    Article  ADS  Google Scholar 

  43. Jennings, C. W. & Strand, R. Geologic Map of California: Ukiah Sheet (California Division of Mines and Geology, 1960)

    Google Scholar 

  44. Strand, R. G. Geologic Map of California: Redding Sheet (California Division of Mines and Geology, 1962)

    Google Scholar 

  45. Blake, M. S., Helley, E. J., Jayko, A. S., Jones, D. L. & Ohlin, H. N. Geologic Map of the Willows 1:100,000 Quadrangle, California (US Geological Survey Open-File Report OF-92-271, 1992)

    Google Scholar 

  46. USDA Forest Service . Existing Vegetation—CALVEG Geodatabase (USDA Forest Service, Pacific Southwest Region Remote Sensing Lab, 2009)

    Google Scholar 

  47. USDA Forest Service . Trinity Serpentine Soil Survey (Pacific Southwest Research Station, 2004)

    Google Scholar 

  48. McGaughey, R. J. Stand Visualization System v. 3.3 (United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2004)

    Google Scholar 

  49. Beaudette, D. E. & O’Geen, A. T. A 1 km Scale, Gridded Soils Database for California (California Soil Resource Lab, Univ. of California, Davis, 2010)

    Google Scholar 

  50. Gesch, D. B. in Digital Elevation Model Technologies and Applications: The DEM User Manual 2nd edn (ed. Maune, D. ) 99–118 (American Society for Photogrammetry and Remote Sensing, 2007)

    Google Scholar 

  51. Fu, P. & Rich, P. M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 37, 25–35 (2002)

    Article  Google Scholar 

  52. Environmental Systems Research Group . ArcGIS Desktop v. 9.3 (Environmental Systems Research Group, Redlands, 2010)

    Google Scholar 

  53. The PRISM Group at Oregon State University . United States Average Monthly or Annual Precipitation, 1971–2000 (Oregon State Univ., 2006)

    Google Scholar 

  54. The PRISM Group at Oregon State University . United States Average Monthly or Annual Maximum Temperature, 1971–2000 (Oregon State Univ., 2006)

    Google Scholar 

  55. Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49, 12–35 (2003)

    Google Scholar 

  56. Reinhardt, E. D., Crookston, N. L. & Rebain, S. A. The Fire and Fuels Extension to the Forest Vegetation Simulator (United States Department of Agriculture, Forest Service, 2003)

    Book  Google Scholar 

  57. Forest Inventory and Analysis Program . The Forest Inventory and Analysis Database: Database Description and Users Manual Version 3.0 for Phase 2, Revision 1. (United States Department of Agriculture, Forest Service, 2008)

    Google Scholar 

  58. California Department of Forestry and Fire Protection . Fire Perimeters (1923 to 2008) for Wildfire in the State of California (State of California, 2009)

    Google Scholar 

  59. Reineke, L. H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 46, 627–638 (1933)

    Google Scholar 

  60. Smith, E. M., Larson, B. C., Kelty, M. J. & Ashton, P. M. S. The Practice of Silviculture: Applied Forest Ecology 9th edn (Wiley, 1996)

    Google Scholar 

  61. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 16, 716–723 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  62. Fox, J. & Weisberg, S. An (R) Companion to Applied Regression (Sage, 2011)

    Google Scholar 

  63. Lorenz, K. & Lal, R. Carbon Sequestration in Forest Ecosystems (Springer, 2010)

    Book  Google Scholar 

  64. de Vries, W. et al. Ecologically implausible carbon response? Nature 451, E1–E3 (2008)

    Article  CAS  Google Scholar 

  65. Townsend, A. R., Braswell, B. H., Holland, E. A. & Penner, J. E. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol. Appl. 6, 806–814 (1996)

    Article  Google Scholar 

  66. Riebe, C. S., Kirchner, J. W. & Finkel, R. C. Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth Planet. Sci. Lett. 218, 421–434 (2004)

    Article  ADS  CAS  Google Scholar 

  67. Lock, J., Kelsey, H., Furlong, K. & Woolace, A. Late Neogene and Quaternary landscape evolution of the northern California Coast Ranges: evidence for Mendocino Triple Junction tectonics. Geol. Soc. Am. Bull. 118, 1232–1246 10.1130/b25885.1. (2006)

  68. Mitchell, C. E., Vincent, P., Weldon, R. J. & Richards, M. A. Present-day vertical deformation of the Cascadia Margin, Pacific Northwest, United States. J. Geophys. Res. Solid Earth 99, 12257–12277 (1994)

    Article  Google Scholar 

  69. Kelsey, H. M., Engebretson, D. C., Mitchell, C. E. & Ticknor, R. L. Topographic form of the Coast Ranges of the Cascadia Margin in relation to coastal uplift rates and plate subduction. J. Geophys. Res. Solid Earth 99, 12245–12255 (1994)

    Article  Google Scholar 

  70. Merritts, D. & Bull, W. B. Interpreting quaternary uplift rates at the Mendocino Triple Junction, northern California, from uplifted marine terraces. Geology 17, 1020–1024 (1989)

    Article  ADS  Google Scholar 

  71. Dahlgren, R. A. Geologic nitrogen as a source of soil acidity. Soil Sci. Plant Nutr. 51, 719–723 (2005)

    Article  CAS  Google Scholar 

  72. Casey, W. H. & Sposito, G. On the temperature-dependence of mineral dissolution rates. Geochim. Cosmochim. Acta 56, 3825–3830 (1992)

    Article  ADS  CAS  Google Scholar 

  73. Brady, P. V. & Carroll, S. A. Direct effects of CO2 and temperature on silicate weathering—possible implications for climate control. Geochim. Cosmochim. Acta 58, 1853–1856 (1994)

    Article  ADS  CAS  Google Scholar 

  74. Verrall, R. E. Determination of activity coefficients for ammonium chloride at 25 °C. J. Solution Chem. 4, 319–329 (1974)

    Article  Google Scholar 

  75. Soil Survey Staff . Soil Survey Geographic (SSURGO) Database for California (United States Department of Agriculture, Natural Resources Conservation Service, 2010)

    Google Scholar 

  76. Beaudette, D. E. & O’Geen, A. T. Algorithms for Quantitative Pedology: A Toolkit for Soil Scientists (California Soil Resource Lab, Univ. of California, Davis, 2010)

    Google Scholar 

Download references

Acknowledgements

We thank the United States Forest Service (USFS) for access and insight, particularly D. Young and B. Rust of the Shasta-Trinity National Forest; C. Ramirez, C. Clark and D. Beardsley of USFS Region 5 Remote Sensing Office; and M. North of the Pacific Southwest Research Station for discussion of FIA modelling. I. Fisher, E. Hendel, K. Mayfield and S. Prentice assisted with sample preparation and fieldwork, and E. Brown assisted in processing strontium isotope samples. D. Beaudette provided assistance in analysing soil data. This work was supported by grants from the David and Lucile Packard Foundation (to B.Z.H. and R.A.D.) the Andrew W. Mellon Foundation (to B.Z.H.) and the Kearney Foundation of Soil Science (to R.A.D.).

Author information

Authors and Affiliations

Authors

Contributions

S.L.M., B.Z.H. and R.A.D. contributed to the experimental design and collection of field samples. S.L.M. performed sample processing and laboratory analysis. S.L.M. designed and implemented the FIA modelling component. S.L.M., B.Z.H. and R.A.D. contributed to the interpretation of laboratory data, modelling results and manuscript preparation.

Corresponding author

Correspondence to Scott L. Morford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains 4 Supplementary Discussions, Supplementary Tables 1-7, Supplementary Figures 1-6 with legends and additional references. (PDF 559 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morford, S., Houlton, B. & Dahlgren, R. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477, 78–81 (2011). https://doi.org/10.1038/nature10415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10415

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing