Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip

Subjects

Abstract

The regrowth of amputated limbs and the distal tips of digits represent models of tissue regeneration in amphibians, fish and mice. For decades it had been assumed that limb regeneration derived from the blastema, an undifferentiated pluripotent cell population thought to be derived from mature cells via dedifferentiation. Here we show that a wide range of tissue stem/progenitor cells contribute towards the restoration of the mouse distal digit. Genetic fate mapping and clonal analysis of individual cells revealed that these stem cells are lineage restricted, mimicking digit growth during development. Transplantation of cyan-fluorescent-protein-expressing haematopoietic stem cells, and parabiosis between genetically marked mice, confirmed that the stem/progenitor cells are tissue resident, including the cells involved in angiogenesis. These results, combined with those from appendage regeneration in other vertebrate subphyla, collectively demonstrate that tissue stem cells rather than pluripotent blastema cells are an evolutionarily conserved cellular mode for limb regeneration after amputation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Germ-layer restriction of ectoderm/mesoderm during digit-tip regeneration.
Figure 2: Lineage restrictions of bone, tendons and endothelium during digit-tip regeneration.
Figure 3: Circulating cells do not contribute to regenerating tissues of the digit tip.
Figure 4: Multiple lineage-restricted clones contribute to digit-tip regeneration.

Similar content being viewed by others

References

  1. Rinkevich, B., Shlemberg, Z. & Fishelson, L. Whole-body protochordate regeneration from totipotent blood cells. Proc. Natl Acad. Sci. USA 92, 7695–7699 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Rinkevich, Y., Paz, G., Rinkevich, B. & Reshef, R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi . PLoS Biol. 5, e71 (2007)

    Article  Google Scholar 

  3. Voskoboynik, A. et al. Striving for normality: whole body regeneration through a series of abnormal generations. FASEB J. 21, 1335–1344 (2007)

    Article  CAS  Google Scholar 

  4. Sánchez Alvarado, A. Regeneration in the metazoans: why does it happen? Bioessays 22, 578–590 (2000)

    Article  Google Scholar 

  5. Han, M., Yang, X., Lee, J., Allan, C. H. & Muneoka, K. Development and regeneration of the neonatal digit tip in mice. Dev. Biol. 315, 125–135 (2008)

    Article  CAS  Google Scholar 

  6. Schotte, O. E. & Smith, C. B. Wound healing processes in amputated mouse digits. Biol. Bull. 117, 546–561 (1959)

    Article  Google Scholar 

  7. Borgens, R. B. Mice regrow the tips of their foretoes. Science 217, 747–750 (1982)

    Article  ADS  CAS  Google Scholar 

  8. Reginelli, A. D., Wang, Y. Q., Sassoon, D. & Muneoka, K. Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 121, 1065–1076 (1995)

    CAS  PubMed  Google Scholar 

  9. Neufeld, D. A. & Zhao, W. Phalangeal regrowth in rodents: postamputational bone regrowth depends upon the level of amputation. Prog. Clin. Biol. Res. 383A, 243–252 (1993)

    CAS  PubMed  Google Scholar 

  10. Illingworth, C. M. Trapped fingers and amputated fingertips in children. J. Pediatr. Surg. 9, 853–858 (1974)

    Article  CAS  Google Scholar 

  11. Rosenthal, L. J., Reiner, M. A. & Bleicher, M. A. Nonoperative management of distal fingertip amputations in children. Pediatrics 64, 1–3 (1979)

    CAS  PubMed  Google Scholar 

  12. Vidal, P. & Dickson, M. G. Regeneration of the distal phalanx. A case report. J. Hand Surg. 18, 230–233 (1993)

    Article  CAS  Google Scholar 

  13. Morgan, T. H. Regeneration (Macmillan, 1901)

    Book  Google Scholar 

  14. Bratincsák, A. et al. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells 25, 2820–2826 (2007)

    Article  Google Scholar 

  15. Faustman, D. L. et al. Comment on papers by Chong et al. Nishio et al., and Suri et al. on diabetes reversal in NOD mice. Science 314 1243a 10.1126/science.1129811 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Djouad, F., Bouffi, C., Ghannam, S., Noël, D. & Jorgensen, C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nature Rev. Rheumatol 5, 392–399 (2009)

    Article  CAS  Google Scholar 

  17. Zaidi, N. & Nixon, A. J. Stem cell therapy in bone repair and regeneration. Ann. NY Acad. Sci. 1117, 62–72 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Brockes, J. P. & Kumar, A. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310, 1919–1923 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Tamura, K., Ohgo, S. & Yokoyama, H. Limb blastema cell: a stem cell for morphological regeneration. Dev. Growth Differ. 52, 89–99 (2010)

    Article  CAS  Google Scholar 

  20. Christen, B., Robles, V., Raya, M., Paramonov, I. & Belmonte, J. C. Regeneration and reprogramming compared. BMC Biol. 8, 5 (2010)

    Article  Google Scholar 

  21. Tsonis, P. A. Stem cells and blastema cells. Curr. Stem Cell Res. Ther. 3, 53–54 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000)

    Article  CAS  Google Scholar 

  23. Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell 116, 639–648 (2004)

    Article  CAS  Google Scholar 

  25. Purhonen, S. J. et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc. Natl Acad. Sci. USA 105, 6620–6625 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Hamrick, M. W. Development and evolution of the mammalian limb: adaptive diversification of nails, hooves, and claws. Evol. Dev. 3, 355–363 (2001)

    Article  CAS  Google Scholar 

  27. Said, S., Parke, W. & Neufeld, D. A. Vascular supplies differ in regenerating and nonregenerating amputated rodent digits. Anat. Rec. A 278, 443–449 (2004)

    Article  Google Scholar 

  28. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA 96, 8551–8556 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007)

    Article  CAS  Google Scholar 

  30. Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases. Nucleic Acids Res. 27, 4324–4327 (1999)

    Article  CAS  Google Scholar 

  31. Kimmel, R. A. et al. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev. 14, 1377–1389 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Logan, M. et al. Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002)

    Article  CAS  Google Scholar 

  33. Akiyama, H. et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc. Natl Acad. Sci. USA 102, 14665–14670 (2005)

    Article  ADS  CAS  Google Scholar 

  34. Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008)

    Article  CAS  Google Scholar 

  35. Pryce, B. A., Brent, A. E., Murchison, N. D., Tabin, C. J. & Schweitzer, R. Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Dev. Dyn. 236, 1677–1682 (2007)

    Article  CAS  Google Scholar 

  36. Forde, A., Constien, R., Gröne, H. J., Hämmerling, G. & Arnold, B. Temporal Cre-mediated recombination exclusively in endothelial cells using Tie2 regulatory elements. Genesis 33, 191–197 (2002)

    Article  CAS  Google Scholar 

  37. Monvoisin, A. et al. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev. Dyn. 235, 3413–3422 (2006)

    Article  CAS  Google Scholar 

  38. Fernando, W. A. et al. Wound healing and blastema formation in regenerating digit tips of adult mice. Dev. Biol. 350, 301–310 (2011)

    Article  CAS  Google Scholar 

  39. Forsberg, E. C., Bhattacharya, D. & Weissman, I. L. Hematopoietic stem cells: expression profiling and beyond. Stem Cell Rev. 2, 23–30 (2006)

    CAS  PubMed  Google Scholar 

  40. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001)

    Article  ADS  CAS  Google Scholar 

  41. Liversage, R. A. in A History of Regeneration Research: Milestones in the Evolution of a Science (eds Dinsmore, C. E. ) (Cambridge Univ. Press, 1991)

    Google Scholar 

  42. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007)

    Article  ADS  CAS  Google Scholar 

  43. Chan, C. K. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009)

    Article  ADS  CAS  Google Scholar 

  44. Gargioli, C. & Slack, J. M. Cell lineage tracing during Xenopus tail regeneration. Development 131, 2669–2679 (2004)

    Article  CAS  Google Scholar 

  45. Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009)

    Article  ADS  CAS  Google Scholar 

  46. Tu, S. & Johnson, S. L. Fate restriction in the growing and regenerating zebrafish fin. Dev. Cell 20, 725–732 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mosley for assistance with animal care and parabiosis experiments; A. Sweet-Cordero for providing Sox9Cre and Prx1Cre mice; R. Schweitzer for providing ScxCre mice; and L. Luo for providing mTmG reporter mice. We thank D. Montoro for assistance with histochemical stains and G. Paz for assistance with figure preparations. This work was supported in part by a grant from the California Institute of Regenerative Medicine (RC1 00354) and from the Smith Family Trust (to I.L.W.), the Oak Foundation and the Hagey Laboratory for Pediatric Regenerative Medicine (to M.T.L.). Y.R. is supported by a Human Frontier Science Program (HFSP) Long Term Fellowship, and the Machiah Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.R. and I.L.W. designed the experiments. Y.R. performed the regeneration experiments, imaged and analysed the data from all regeneration experiments. H.U. provided the Rainbow reporter mice for part of the experiments. M.T.L. provided the histochemical stains for part of the experiments. Y.R. and P.L. performed the HSC transplantations and analysed the data. Y.R. and I.L.W. wrote the manuscript.

Corresponding author

Correspondence to Yuval Rinkevich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-7 with legends and Supplementary Table 1. (PDF 14165 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinkevich, Y., Lindau, P., Ueno, H. et al. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476, 409–413 (2011). https://doi.org/10.1038/nature10346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10346

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing