Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Different substrate-dependent transition states in the active site of the ribosome

Abstract

The active site of the ribosome, the peptidyl transferase centre, catalyses two reactions, namely, peptide bond formation between peptidyl-tRNA and aminoacyl-tRNA as well as the release-factor-dependent hydrolysis of peptidyl-tRNA. Unlike peptide bond formation, peptide release is strongly impaired by mutations of nucleotides within the active site, in particular by base exchanges at position A2602 (refs 1, 2). The 2′-OH group of A76 of the peptidyl - tRNA substrate seems to have a key role in peptide release3. According to computational analysis4 , the 2′-OH may take part in a concerted ‘proton shuttle’ by which the leaving group is protonated, in analogy to similar current models of peptide bond formation4,5,6. Here we report kinetic solvent isotope effects and proton inventories (reaction rates measured in buffers with increasing content of deuterated water, D2O) of the two reactions catalysed by the active site of the Escherichia coli ribosome. The transition state of the release factor 2 (RF2)-dependent hydrolysis reaction is characterized by the rate-limiting formation of a single strong hydrogen bond. This finding argues against a concerted proton shuttle in the transition state of the hydrolysis reaction. In comparison, the proton inventory for peptide bond formation indicates the rate-limiting formation of three hydrogen bonds with about equal contributions, consistent with a concerted eight-membered proton shuttle in the transition state5. Thus, the ribosome supports different rate-limiting transition states for the two reactions that take place in the peptidyl transferase centre.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RF2-catalysed hydrolysis of fMet-tRNA fMet on the ribosome.
Figure 2: KSIE and pH dependence of the hydrolysis reaction.
Figure 3: KSIE of the peptidyl transfer reaction.

Similar content being viewed by others

References

  1. Polacek, N. et al. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell 11, 103–112 (2003)

    Article  CAS  Google Scholar 

  2. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004)

    Article  CAS  Google Scholar 

  3. Brunelle, J. L., Shaw, J. J., Youngman, E. M. & Green, R. Peptide release on the ribosome depends critically on the 2' OH of the peptidyl-tRNA substrate. RNA 14, 1526–1531 (2008)

    Article  CAS  Google Scholar 

  4. Trobro, S. & Aqvist, J. Mechanism of the translation termination reaction on the ribosome. Biochemistry 48, 11296–11303 (2009)

    Article  CAS  Google Scholar 

  5. Wallin, G. & Aqvist, J. The transition state for peptide bond formation reveals the ribosome as a water trap. Proc. Natl Acad. Sci. USA 107, 1888–1893 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Jin, H., Kelley, A. C., Loakes, D. & Ramakrishnan, V. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc. Natl Acad. Sci. USA 107, 8593–8598 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl Acad. Sci. USA 105, 19684–19689 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266 (2005)

    Article  CAS  Google Scholar 

  11. Schmeing, T. M., Huang, K. S., Kitchen, D. E., Strobel, S. A. & Steitz, T. A. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20, 437–448 (2005)

    Article  CAS  Google Scholar 

  12. Shaw, J. J. & Green, R. Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol. Cell 28, 458–467 (2007)

    Article  CAS  Google Scholar 

  13. Trobro, S. & Aqvist, J. Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry 45, 7049–7056 (2006)

    Article  CAS  Google Scholar 

  14. Quinn, D. M. in Isotope Effects in Chemistry and Biology (eds Kohen, A. & Limbach, H. H. ) 995–1018 (CRC Taylor and Francis, 2006)

    Google Scholar 

  15. Schowen, K. B. J. in Transition States of Biochemical Processes (eds Gandour, R. D. & Schowen, R. L. ) 225–283 (Plenum, 1972)

    Google Scholar 

  16. Amort, M. et al. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Nucleic Acids Res. 35, 5130–5140 (2007)

    Article  CAS  Google Scholar 

  17. Mora, L. et al. The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol. Microbiol. 47, 267–275 (2003)

    Article  CAS  Google Scholar 

  18. Katunin, V. I., Muth, G. W., Strobel, S. A., Wintermeyer, W. & Rodnina, M. V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346 (2002)

    Article  CAS  Google Scholar 

  19. Kingery, D. A. et al. An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. Chem. Biol. 15, 493–500 (2008)

    Article  CAS  Google Scholar 

  20. Seila, A. C., Okuda, K., Nunez, S., Seila, A. F. & Strobel, S. A. Kinetic isotope effect analysis of the ribosomal peptidyl transferase reaction. Biochemistry 44, 4018–4027 (2005)

    Article  CAS  Google Scholar 

  21. Beringer, M., Adio, S., Wintermeyer, W. & Rodnina, M. The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. RNA 9, 919–922 (2003)

    Article  CAS  Google Scholar 

  22. Beringer, M. et al. Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J. Biol. Chem. 280, 36065–36072 (2005)

    Article  CAS  Google Scholar 

  23. Bieling, P., Beringer, M., Adio, S. & Rodnina, M. V. Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nature Struct. Mol. Biol. 13, 423–428 (2006)

    Article  CAS  Google Scholar 

  24. Huang, K. S., Carrasco, N., Pfund, E. & Strobel, S. A. Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction. Biochemistry 47, 8822–8827 (2008)

    Article  CAS  Google Scholar 

  25. Rangelov, M. A., Vayssilov, G. N., Yomtova, V. M. & Petkov, D. D. The syn-oriented 2-OH provides a favorable proton transfer geometry in 1,2-diol monoester aminolysis: implications for the ribosome mechanism. J. Am. Chem. Soc. 128, 4964–4965 (2006)

    Article  CAS  Google Scholar 

  26. Sievers, A., Beringer, M., Rodnina, M. V. & Wolfenden, R. The ribosome as an entropy trap. Proc. Natl Acad. Sci. USA 101, 7897–7901 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Dincbas-Renqvist, V. et al. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 19, 6900–6907 (2000)

    Article  CAS  Google Scholar 

  28. Freistroffer, D. V., Kwiatkowski, M., Buckingham, R. H. & Ehrenberg, M. The accuracy of codon recognition by polypeptide release factors. Proc. Natl Acad. Sci. USA 97, 2046–2051 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Glasoe, P. K. & Long, F. A. Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–190 (1960)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-H. Limbach for discussions and advice. This work was supported by the Deutsche Forschungsgemeinschaft (M.V.R. and W.W.).

Author information

Authors and Affiliations

Authors

Contributions

S.K., W.W. and M.V.R. conceived the study and designed experiments. S.K. performed experiments. All three authors discussed results and wrote the paper.

Corresponding author

Correspondence to Marina V. Rodnina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, additional references and Supplementary Figure 1-2 with legends. (PDF 189 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlenkoetter, S., Wintermeyer, W. & Rodnina, M. Different substrate-dependent transition states in the active site of the ribosome. Nature 476, 351–354 (2011). https://doi.org/10.1038/nature10247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10247

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing