Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-CO2 greenhouse gases and climate change

Subjects

Abstract

Earth’s climate is warming as a result of anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO2) from fossil fuel combustion. Anthropogenic emissions of non-CO2 greenhouse gases, such as methane, nitrous oxide and ozone-depleting substances (largely from sources other than fossil fuels), also contribute significantly to warming. Some non-CO2 greenhouse gases have much shorter lifetimes than CO2, so reducing their emissions offers an additional opportunity to lessen future climate change. Although it is clear that sustainably reducing the warming influence of greenhouse gases will be possible only with substantial cuts in emissions of CO2, reducing non-CO2 greenhouse gas emissions would be a relatively quick way of contributing to this goal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anthropogenic emissions of non-CO2 GHGs and CO2.
Figure 2: Annual anthropogenic emissions of non-CO2 GHGs in recent years1,9,10,17,18,56.
Figure 3: Direct radiative forcing derived from observed and projected abundances of LLGHGs33.
Figure 4: Relative changes in radiative forcing from a 25% cut in GHG emissions.

Similar content being viewed by others

References

  1. Denman, K. L. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 7 (Cambridge Univ. Press, 2007)

  2. Fisher, B. S. et al. in Climate Change 2007: Mitigation of Climate Change (eds Metz, B. et al.) Ch. 3 (Cambridge Univ. Press, 2007)

  3. Velders, G. J. M., Fahey, D. W., Daniel, J. S., McFarland, M. & Andersen, S. O. The large contribution of projected HFC emissions to future climate forcing. Proc. Natl Acad. Sci. USA 106, 10949–10954 (2010)

    Article  ADS  Google Scholar 

  4. van Vuuren, D. P., Weyant, J. & de la Chesnaye, F. Multi-gas scenarios to stabilize radiative forcing. Energy Econ. 28, 102–120 (2006)

    Article  Google Scholar 

  5. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Montzka, S. A., Daniel, J. S., Cohen, J. & Vick, K. in Trends in Emissions of Ozone-Depleting Substances, Ozone Layer Recovery, and Implications for Ultraviolet Radiation Exposure (eds Ravishankara, A. R., Kurylo, M. J. & Ennis, C. A. ) Ch. 2 (US Department of Commerce, 2008)

    Google Scholar 

  8. Townsend, A. R. & Howarth, R. W. Fixing the global nitrogen problem. Sci. Am. 302, 64–71 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Forster, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 2 (Cambridge Univ. Press, 2007)

  10. Daniel, J. S. et al. in Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52 (ed. Ennis, C. A. ) Ch. 5 (World Meteorological Organization, 2011)

  11. Velders, G. J. M., Andersen, S. O., Daniel, J. S., Fahey, D. W. & McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad. Sci. USA 104, 4814–4819 (2007)This paper quantified the GWP-weighted reductions in emissions of ozone-depleting substances and was the first to point out the significant climate benefits achieved by the Montreal protocol in relation to those expected from the Kyoto Protocol.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Dlugokencky, E. J. et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 36, L18803 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Rigby, M. et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805 (2008)

    Article  ADS  Google Scholar 

  15. Spahni, R. et al. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310, 1317–1321 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 80,000 years. Nature 453, 383–386 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Bousquet, P. et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439–443 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Bergamaschi, P. et al. Satellite cartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J. Geophys. Res. 112, D02304 (2007)

    ADS  Google Scholar 

  19. Walter, B. P., Heimann, M. & Matthews, E. Modeling modern methane emissions from natural wetlands 1. Model description and results. J. Geophys. Res. 106, 34189–34206 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Prinn, R. G. et al. Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys. Res. Lett. 32, L07809 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Spivakovsky, C. M. et al. Three-dimensional climatological distribution of tropospheric OH: update and evaluation. J. Geophys. Res. 105, 8931–8980 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Shindell, D. T. et al. Improved attribution of climate forcing to emissions. Science 326, 716–718 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. European. Commission Joint Research Centre. EDGARv4.1. Emission Database for Global Atmospheric Researchhttp://edgar.jrc.ec.europa.eu/overview.php?v=41〉 (2010)

  24. Shindell, D. T. Walter, B. P. & Faluvegi, G. Impacts of climate change on methane emissions from wetlands. Geophys. Res. Lett. 31, L21202 (2004)

    ADS  Google Scholar 

  25. McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009)

    Article  Google Scholar 

  26. Petrenko, V. V. et al. 14CH4 measurements in Greenland ice: investigating Last Glacial Termination CH4 sources. Science 324, 506–508 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Brook, E., Archer, D., Dlugokencky, E. & Frolking, S. &. Lawrence, D. in Abrupt Climate Change Ch. 5 (US Geological Survey, 2008)

  28. Keppler, F., Hamilton, J. T. G., Braß, M. & Röckmann, T. Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Nisbet, R. E. R. et al. Emission of methane from plants. Proc. R. Soc. Lond. B 276, 1347–1354 (2009)

    CAS  Google Scholar 

  30. Montzka, S. A. et al. Small interannual variability of global atmospheric hydroxyl. Science 331, 67–69 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Flückiger, J. et al. N2O and CH4 variations during the last glacial epoch: insight into global processes. Glob. Biogeochem. Cycles 18, GB1020 (2004)

    Article  ADS  CAS  Google Scholar 

  32. Schilt, A. et al. Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat. Sci. Rev. 29, 182–192 (2010)

    Article  ADS  Google Scholar 

  33. Hofmann, D. J. et al. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. Tellus 58B, 614–619 (2006)

    Article  ADS  CAS  Google Scholar 

  34. Seitzinger, S. P., Kroeze, C. & Styles, R. V. Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosphere Glob. Chang. Sci. 2, 267–279 (2000)

    Article  ADS  CAS  Google Scholar 

  35. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008)This paper proposed that the use of fertilizer to grow certain crops for biofuel could result in N 2 O emissions sufficient to offset the avoided CO 2 from fossil fuel combustion.

    Article  ADS  CAS  Google Scholar 

  37. Melillo, J. M. et al. Indirect emissions from biofuels: how important? Science 326, 1397–1399 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Smeets, E. M. W., Bouwman, L. F., Stehfest, E., van Vuuren, D. P. & Posthuma, A. Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Glob. Change Biol. 15, 1–23 (2009)

    Article  ADS  Google Scholar 

  39. Skiba, U. & Smith, K. A. The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere Glob. Chang. Sci. 2, 379–386 (2000)

    Article  ADS  CAS  Google Scholar 

  40. Keller, M. et al. Soil-atmosphere exchange for nitrous oxide, nitric oxide, methane, and carbon dioxide in logged and undisturbed forest in the Tapajos National Forest, Brazil. Earth Interact. 9, 1–28 (2005)

    Article  ADS  Google Scholar 

  41. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Duce, R. A. et al. Impact of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2009)This paper provides a semi-quantitative synthesis of the influence atmospheric anthropogenic nitrogen has on the balance of GHG exchange in the open ocean.

    Article  ADS  CAS  Google Scholar 

  43. Hirsch, A. I. et al. Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001. Glob. Biogeochem. Cycles 20, GB1008 (2006)

    Article  ADS  CAS  Google Scholar 

  44. Huang, J. et al. Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method. J. Geophys. Res. 113, D17313 (2008)

    Article  ADS  CAS  Google Scholar 

  45. Suntharalingam, P. & Sarmiento, J. L. Factors governing the oceanic nitrous oxide distribution: simulations with an ocean general circulation model. Glob. Biogeochem. Cycles 14, 429–454 (2000)

    Article  ADS  CAS  Google Scholar 

  46. Hsu, J. & Prather, M. J. Global long-lived chemical modes excited in a 3-D chemistry transport model: stratospheric N2O, NO y, O3 and CH4 chemistry. Geophys. Res. Lett. 37, L07805 (2010)

    Article  ADS  CAS  Google Scholar 

  47. Schimel, D. et al. in Climate Change 1995: The Science of Climate Change (eds Houghton, J. & Meira, G. ) Ch. 2 (Cambridge Univ. Press, 1996)

  48. Butchart, N. & Scaife, A. A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature 410, 799–802 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Prather, M. J. Time scales in atmospheric chemistry: coupled perturbations to N2O, NO y, and O3 . Science 279, 1339–1341 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Goldberg, S. D. & Gebauer, G. Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink. Glob. Change Biol. 15, 850–860 (2009)

    Article  ADS  Google Scholar 

  51. Syakila, A. & Kroeze, C. The global nitrous oxide budget revisited. Greenh. Gas Meas. Manag. 1, 17–26 (2011)

    Article  ADS  CAS  Google Scholar 

  52. Schlesinger, W. H. On the fate of anthropogenic nitrogen. Proc. Natl Acad. Sci. USA 106, 203–208 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Goldberg, S. D., Knorr, K.-H., Blodau, C., Lischeid, G. & Gebauer, G. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soils concentrations. Glob. Change Biol. 16, 220–233 (2010)

    Article  ADS  Google Scholar 

  54. Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. Modeling global annual N2O and NO emissions from fertilized fields. Glob. Biogeochem. Cycles 16, 1080 (2002)

    ADS  Google Scholar 

  55. Nevison, C. D., Mahowald, N. M., Weiss, R. F. & Prinn, R. G. Interannual and seasonal variability in atmospheric N2O. Glob. Biogeochem. Cycles 21, GB3017 (2007)

    Article  ADS  CAS  Google Scholar 

  56. Montzka, S. A. et al. in Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52 (ed. Ennis, C. A. ) Ch. 1 (World Meteorological Organization, 2011)

  57. Montzka, S. A. et al. Recent increases in global HFC-23 emissions. Geophys. Res. Lett. 37, L02808 (2010)

    Article  ADS  CAS  Google Scholar 

  58. Miller, B. R. et al. HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures. Atmos. Chem. Phys. 10, 7875–7890 (2010)

    Article  ADS  CAS  Google Scholar 

  59. Lelieveld, J. Dentener, F. J., Peters, W. & Krol, M. C. On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere. Atmos. Chem. Phys. 4, 2337–2344 (2004)

    Article  ADS  CAS  Google Scholar 

  60. Solomon, S. et al. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl Acad. Sci. USA 107, 18354–18359 (2010)This paper points out how the warming associated with a pulsed GHG emission persists longer than the emission lifetime owing to timescales associated with the movement of heat throughout the climate system, particularly into and out of the ocean.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Levin, I. et al. The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories. Atmos. Chem. Phys. 10, 2655–2662 (2010)

    Article  ADS  CAS  Google Scholar 

  62. Sturges, W. T. et al. A potent greenhouse gas identified in the atmosphere: SF5CF3 . Science 289, 611–613 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Weiss, R. F., Mühle, J., Salameh, P. & Harth, C. M. Nitrogen trifluoride in the global atmosphere. Geophys. Res. Lett. 35, L20821 (2008)

    Article  ADS  CAS  Google Scholar 

  64. Mühle, J. et al. Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmos. Chem. Phys. 10, 5145–5164 (2010)

    Article  ADS  CAS  Google Scholar 

  65. Shindell, D. T. Climate and ozone response to increased stratospheric water vapor. Geophys. Res. Lett. 28, 1551–1554 (2001)

    Article  ADS  CAS  Google Scholar 

  66. Fiore, A. M. et al. Linking ozone pollution and climate change: the case for controlling methane. Geophys. Res. Lett. 29, 1919 (2002)

    Article  ADS  CAS  Google Scholar 

  67. Hansen, J., Sato, M., Ruedy, R., Lacis, A. & Oinas, V. Global warming in the twenty-first century: an alternative scenario. Proc. Natl Acad. Sci. USA 97, 9875–9880 (2000)This paper was one of the first to point out that reductions in non-CO 2 GHG emissions could reduce the rate of global warming during the next half-century and lessen the potential for drastic climate change.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Vuuren, D. P., Eickhout, B., Lucas, P. L. & den Elzen, M. G. J. Long-term multi-gas scenarios to stabilise radiative forcing: exploring costs and benefits within an integrated assessment framework. Energy J. 3 (special issue 3). 201–233 (2006)

  69. Gschrey, B. & Schwarz, W. Projections of Global Emissions of Fluorinated Greenhouse Gases in 2050. Report No. (UBA-FB) 001318 (Federal Environment Agency Germany, 2009)

    Google Scholar 

  70. Solomon, S. et al. Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia (Natl Acad. Press, 2010)

  71. Archer, D. & Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2 . Clim. Change 90, 283–297 (2008)This paper summarizes the multiple timescales over which CO 2 is removed from the atmosphere, demonstrating how 10–30% of fossil-fuel-derived CO 2 remains in the atmosphere for 1,000–10,000 yr after being emitted.

    Article  ADS  CAS  Google Scholar 

  72. Towie, N. Scientists issue declaration at Bali. Nature 10.1038/news.2007.361 (6 December 2007)

  73. Lucas, P. L., van Vuuren, D. P., Olivier, J. G. J. & den Elzen, G. J. Long-term reduction potential of non-CO2 greenhouse gases. Environ. Sci. Policy 10, 85–103 (2007)

    Article  Google Scholar 

  74. van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under elevated CO2 . Nature (in the press)

  75. Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geosci. 3, 13–17 (2010)

    Article  ADS  CAS  Google Scholar 

  76. Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nature Geosci. 3, 525–532 (2010)

    Article  ADS  CAS  Google Scholar 

  77. Zaehle, S., Friedlingstein, P. & Friend, A. D. Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 37, L01401 (2010)

    Article  ADS  CAS  Google Scholar 

  78. Thornton, P. E. et al. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6, 2099–2120 (2009)

    Article  ADS  CAS  Google Scholar 

  79. Hungate, B. A. Dukes, J. S., Shaw, R., Luo, Y. & Field, C. B. Nitrogen and climate change. Science 302, 1512–1513 (2003)With a fairly straightforward analysis, this paper outlines how nitrogen availability will limit carbon uptake from CO 2 fertilization in the future.

    Article  CAS  PubMed  Google Scholar 

  80. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McCurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010)Much is being learned about how the biosphere will respond to enhanced CO 2 concentrations, and this study, in summarizing results from over a decade of exposing a forest to enhanced CO 2 concentrations, shows how nitrogen limitations limit long-term CO 2 fertilization effects even in the eastern United States.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. McCarthy, H. R. et al. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 185, 514–528 (2010)

    Article  CAS  PubMed  Google Scholar 

  82. Sitch, S. Cox, P. M., Collins, W. J. & Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Rütting, T., Clough, T. J., Muller, C., Lieffering, M. & Newton, P. C. D. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture. Glob. Change Biol. 16, 2530–2542 (2010)

    Article  ADS  Google Scholar 

  84. McKinley, D. C., Romero, J. C., Hungate, B. A., Drake, B. G. & Megonigal, J. P. Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Glob. Change Biol. 15, 2035–2048 (2009)

    Article  ADS  Google Scholar 

  85. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nature Geosci. 1, 430–437 (2008)

    Article  ADS  CAS  Google Scholar 

  86. Janssens, I. A. & Luyssaert, S. Nitrogen’s carbon bonus. Nature Geosci. 2, 318–319 (2009)

    Article  ADS  CAS  Google Scholar 

  87. Taylor, P. G. & Townsend, A. R. Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature 464, 1178–1181 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Unger, N. et al. Attribution of climate forcing to economic sectors. Proc. Natl Acad. Sci. USA 107, 3382–3387 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Montzka, S. A. et al. Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature 398, 690–694 (1999)

    Article  ADS  CAS  Google Scholar 

  90. Seitzinger, S. P. & Kroeze, C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob. Biogeochem. Cycles 12, 93–113 (1998)

    Article  ADS  CAS  Google Scholar 

  91. Parrish, D. D. et al. Decadal change in carbon monoxide to nitrogen oxide ratio in U.S. vehicular emissions. J. Geophys. Res. 107, 4140 (2002)

    Article  Google Scholar 

  92. Bergamaschi, P. et al. Inverse modeling of European CH4 emissions 2001–2006. J. Geophys. Res. 115, D22309 (2010)

    Article  ADS  CAS  Google Scholar 

  93. Stohl, A. et al. Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling. Atmos. Chem. Phys. 10, 3545–3560 (2010)

    Article  ADS  CAS  Google Scholar 

  94. Kort, E. A. et al. Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. Geophys. Res. Lett. 35, L18808 (2008)

    Article  ADS  CAS  Google Scholar 

  95. Wunch, D. Wenngerg, P. O., Toon, G. C., Keppel-Aleks, G. & Yavin, Y. G. Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett. 36, L15810 (2009)

    Article  ADS  CAS  Google Scholar 

  96. Peters, W. et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl Acad. Sci. USA 104, 18925–18930 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with P. Tans and J. Daniel, updates to data published in ref. 33 from J. Elkins, G. Dutton and T. Conway, and technical assistance from C. Siso and B. Miller. This work was supported in part by the Atmospheric Composition and Climate Program and the Carbon Cycle Program of NOAA’s Climate Program Office.

Author information

Authors and Affiliations

Authors

Contributions

The writing and drafting of figures was led by S.A.M., but all three authors contributed to the writing and to the ideas presented in this review.

Corresponding author

Correspondence to S. A. Montzka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montzka, S., Dlugokencky, E. & Butler, J. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011). https://doi.org/10.1038/nature10322

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10322

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing