Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Woody cover and hominin environments in the past 6 million years

Abstract

The role of African savannahs in the evolution of early hominins has been debated for nearly a century. Resolution of this issue has been hindered by difficulty in quantifying the fraction of woody cover in the fossil record. Here we show that the fraction of woody cover in tropical ecosystems can be quantified using stable carbon isotopes in soils. Furthermore, we use fossil soils from hominin sites in the Awash and Omo-Turkana basins in eastern Africa to reconstruct the fraction of woody cover since the Late Miocene epoch (about 7 million years ago). 13C/12C ratio data from 1,300 palaeosols at or adjacent to hominin sites dating to at least 6 million years ago show that woody cover was predominantly less than 40% at most sites. These data point to the prevalence of open environments at the majority of hominin fossil sites in eastern Africa over the past 6 million years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation of δ 13 C between gap and canopy samples for 76 tropical soils used in this study.
Figure 2: Woody cover and soil δ 13 C for 76 tropical soils used in this study.
Figure 3: Surface soil temperatures from soil temperature profiles.
Figure 4: Estimated fraction of woody cover based on >1,300 published analyses of palaeosols from eastern African hominin sites from 6 Myr ago to present25,26,29,30,31,46,47,48,49,50.
Figure 5: Map with modern soil sites and hominin-fossil bearing localities in the East African Rift System overlain on GTOPO30 digital elevation model.
Figure 6: Composite record of palaeosol stable isotopic composition from the Awash Valley, Ethiopia (left) and Omo-Turkana Basin, Kenya and Ethiopia (right).

Similar content being viewed by others

References

  1. Jolly, C. J. Early Hominids of Africa (Duckworth, 1978)

    Google Scholar 

  2. Klein, R. G. The Human Career: Human Biological and Cultural Origins (Univ. Chicago Press, 1999)

    Google Scholar 

  3. Potts, R. Environmental hypotheses of hominin evolution. Yearb. Phys. Anthropol. 107, 93–136 (1998)

    Article  Google Scholar 

  4. Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H. in Paleoclimate and Evolution with Emphasis on Human Origins (Yale Univ. Press, 1995)

    Google Scholar 

  5. White, T. D. et al. Ardipithecus ramidus and the Paleobiology of Early Hominids. Science 326, 75–86 (2009)

    ADS  CAS  PubMed  Google Scholar 

  6. Wood, B. & Harrison, T. The evolutionary context of the first hominins. Nature 470, 347–352 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bramble, D. M. & Lieberman, D. E. Endurance running and the evolution of Homo . Nature 432, 345–352 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Pickering, T. R. & Bunn, H. T. The endurance running hypothesis and hunting and scavenging in savanna-woodlands. J. Hum. Evol. 53, 434–438 (2007)

    Article  PubMed  Google Scholar 

  9. Rogers, M. J., Harris, J. W. K. & Feibel, C. S. Changing patterns of land use by Plio-Pleistocene hominids in the Lake Turkana Basin. J. Hum. Evol. 27, 139–158 (1994)

    Article  Google Scholar 

  10. Sept, J. Shadows on a changing landscape: comparing nesting patterns of hominids and chimpanzees since their last common ancestor. Am. J. Primatol. 46, 85–101 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Wheeler, P. E. The thermoregulatory advantages of heat storage and shade seeking behaviour to hominids foraging in equatorial savanna environments. J. Hum. Evol. 26, 339–350 (1994)

    Article  Google Scholar 

  12. Richmond, B. G., Begun, D. R. & Strait, D. S. The origin of human bipedalism: the knuckle-walking hypothesis revisited. Yearb. Phys. Anthropol. 116, 70–105 (2001)

    Article  Google Scholar 

  13. Teaford, M. F. & Ungar, P. S. Diet and the evolution of the earliest human ancestors. Proc. Natl Acad. Sci. USA 97, 13506–13511 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dart, R. A. Australopithecus africanus: the man-ape of South Africa. Nature 115, 195–199 (1925)

    Article  ADS  Google Scholar 

  15. Behrensmeyer, A. K. Climate change and human evolution. Science 311, 476–478 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Pearcy, R. W. & Ehleringer, J. R. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7, 1–13 (1984)

    Article  CAS  Google Scholar 

  17. Wynn, J. G. & Bird, M. I. Environmental controls on the stable carbon isotopic composition of soil organic carbon: implications for modeling the distribution of C3 and C4 plants, Australia. Tellus B Chem. Phys. Meterol. 60, 604–621 (2008)

    Article  ADS  Google Scholar 

  18. Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008)

    Article  PubMed  Google Scholar 

  19. Cerling, T. E. et al. Comment on the Paleoenvironment of Ardipithecus ramidus . Science 328 10.1126/science.1185274 (2010)

  20. Bird, M. I., Veenendaal, E. M. & Lloyd, J. Soil carbon inventories and δ13C along a moisture gradient in Botswana. Glob. Change Biol. 10, 342–349 (2004)

    Article  ADS  Google Scholar 

  21. Ometto, J. P. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006)

    Article  CAS  Google Scholar 

  22. Bird, M. I., Chivas, A. R. & Head, J. A latitudinal gradient in carbon turnover times in forest soils. Nature 381, 143–146 (1996)

    Article  ADS  CAS  Google Scholar 

  23. White, F. The Vegetation of Africa Vol. 20 (United Nations Scientific and Cultural Organization, 1983)

    Google Scholar 

  24. Ratnam, J. et al. When is a ‘forest’ a savanna, and when does it matter. Glob. Ecol. Biogeogr 10.1111/j.1466-8238.2010.00634.x (2011)

  25. Cerling, T. E. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 241–247 (1992)

    Article  Google Scholar 

  26. Wynn, J. G. Influence of Plio-Pleistocene aridification on human evolution from paleosols of the Turkana Basin, Kenya. Am. J. Phys. Anthropol. 123, 106–118 (2004)

    Article  PubMed  Google Scholar 

  27. Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Plummer, T. W. et al. Oldest evidence of toolmaking hominins in a grassland-dominated ecosystem. PLoS ONE 4, e7199 (2009)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Sikes, N. E. & Ashley, G. M. Stable isotopes of pedogenic carbonates as indicators of paleoecology in the Plio-Pleistocene (upper Bed I), western margin of the Olduvai Basin, Tanzania. J. Hum. Evol. 53, 574–594 (2007)

    Article  PubMed  Google Scholar 

  31. WoldeGabriel, G. et al. The geological, isotopic, botanical, invertebrate and lower vertebrate surroundings of Ardipithecus ramidus . Science 326, 65 (2009)

    Article  ADS  Google Scholar 

  32. Wood, B. A. & Lonergan, N. The hominin fossil record: taxa, grades and clades. J. Anat. 212, 354–376 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Feibel, C. S., Harris, J. M. & Brown, F. H. in Koobi Fora Research Project Vol. 3 (ed. Harris, J. M. Harris ) 321–346 (Clarendon, 1991)

    Google Scholar 

  34. Quade, J. & Wynn, J. G. in Geological Society of America Special Publications Vol. 446 (Geological Society of America, 2008)

    Google Scholar 

  35. Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J. & Hill, D. J. A new global biome reconstruction and data-model comparison for the Middle Pliocene. Glob. Ecol. Biogeogr. 17, 432–447 (2008)

    Article  Google Scholar 

  36. Levin, N. E., Brown, F. H., Behrensmeyer, A. K., Bobe, R. & Cerling, T. E. Paleosol carbonates from the Omo Group: Isotopic records of local and regional environmental change in East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol 10.1016/j.palaeo.2011.04.026 (2011)

  37. Cane, M. A. & Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411, 157–162 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. deMenocal, P. B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004)

    Article  ADS  CAS  Google Scholar 

  39. deMenocal, P. B. Climate and human evolution. Science 331, 540–542 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Feakins, S. J., deMenocal, P. B. & Eglinton, T. I. Biomarker records of late Neogene changes in northeast African vegetation. Geology 33, 977–980 (2005)

    Article  ADS  CAS  Google Scholar 

  41. Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Natl Acad. Sci. USA 107, 11245–11249 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gibbons, A. A new kind of ancestor: Ardipithecus ramidus . Science 326, 36–40 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2 . Tellus B Chem. Phys. Meterol. 51, 170–193 (1999)

    Article  ADS  Google Scholar 

  44. Keeling, R. F., Piper, S. C., Bollenbacher, A. F. & Walker, S. J. Monthly atmospheric 13C/12C isotopic ratios for 11 SIO stations. In Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, 2010)

    Google Scholar 

  45. Zar, J. H. Biostatistical Analysis 2nd edn (Prentice-Hall, 1984)

  46. Aronson, J. L., Hailemichael, M. & Savin, S. M. Hominid environments at Hadar from paleosol studies in a framework of Ethiopian climate change. J. Hum. Evol. 55, 532–550 (2008)

    Article  PubMed  Google Scholar 

  47. Levin, N. E., Quade, J., Simpson, S. W., Semaw, S. & Rogers, M. J. Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia. Earth Planet. Sci. Lett. 219, 93–110 (2004)

    Article  ADS  CAS  Google Scholar 

  48. Quinn, R. L., Lepre, C. J., Wright, J. D. & Feibel, C. S. Paleogeographic variations of pedogenic carbonate δ13C values from Koobi Fora, Kenya: implications for floral compositions of Plio-Pleistocene hominin environments. J. Hum. Evol. 53, 560–573 (2007)

    Article  PubMed  Google Scholar 

  49. White, T. D. et al. Asa Issie, Aramis, and the origin of Australopithecus . Nature 440, 883–889 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Wynn, J. G. Paleosols, stable carbon isotopes and paleoenvironmental interpretation of Kanapoi, Northern Kenya. J. Hum. Evol. 39, 411–432 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the governments of Kenya and Ethiopia for permission to conduct this research, and F. H. Brown for discussions. The authors thank Kenya Wildlife Service and members of the Dikika and Gona Research Projects for support in the field, and Z. Bedaso for aid with analyses. This research was supported by funding from the LSB Leakey Foundation and NSF grants BCS 0621542, EAR-0617010, EAR-0937819 and BCS-0321893.

Author information

Authors and Affiliations

Authors

Contributions

S.A.A., M.I.B., T.E.C., D.K.K., N.E.L., W.M., J.Q. and C.H.R. designed the modern soil surveys. T.E.C., M.I.B., A.N.M., W.M. and J.G.W. evaluated the amount of woody cover. C.H.R. and W.M. analysed the soil temperature data. M.I.B., N.E.L., A.N.M. and J.G.W. analysed modern soils. N.E.L., J.Q. and J.G.W. contributed new palaeosol data. T.E.C. and J.G.W. wrote the paper with input from all authors.

Corresponding author

Correspondence to Thure E. Cerling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-2 with legends, Supplementary Methods Supplementary Tables 1-6 and additional references. (PDF 629 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerling, T., Wynn, J., Andanje, S. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011). https://doi.org/10.1038/nature10306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10306

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing