Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing

This article has been updated

Abstract

Alternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants. Hub1 binding mildly alters spliceosomal protein interactions and barely affects general splicing in S. cerevisiae. However, spliceosomes that lack Hub1, or are defective in Hub1–HIND interaction, cannot use certain non-canonical 5′ splice sites and are defective in alternative SRC1 splicing. Hub1 confers alternative splicing not only when bound to HIND, but also when experimentally fused to Snu66, Prp38, or even the core splicing factor Prp8. Our study indicates a novel mechanism for splice site utilization that is guided by non-covalent modification of the spliceosome by an unconventional ubiquitin-like modifier.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hub1 binds to HIND.
Figure 2: Functional links to splicing.
Figure 3: Splice-site usage.
Figure 4: Alternative splicing of SRC1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Change history

  • 09 June 2011

    Figs 3c and 4b were corrected.

References

  1. Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009)

    Article  ADS  CAS  Google Scholar 

  2. McNally, T. et al. Structural analysis of UBL5, a novel ubiquitin-like modifier. Protein Sci. 12, 1562–1566 (2003)

    Article  CAS  Google Scholar 

  3. Ramelot, T. A. et al. Solution structure of the yeast ubiquitin-like modifier protein Hub1. J. Struct. Funct. Genomics 4, 25–30 (2003)

    Article  CAS  Google Scholar 

  4. Wilkinson, C. R. et al. Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr. Biol. 14, 2283–2288 (2004)

    Article  CAS  Google Scholar 

  5. Friedman, J. S., Koop, B. F., Raymond, V. & Walter, M. A. Isolation of a ubiquitin-like (UBL5) gene from a screen identifying highly expressed and conserved iris genes. Genomics 71, 252–255 (2001)

    Article  CAS  Google Scholar 

  6. Dittmar, G. A., Wilkinson, C. R., Jedrzejewski, P. T. & Finley, D. Role of a ubiquitin-like modification in polarized morphogenesis. Science 295, 2442–2446 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Lüders, J., Pyrowolakis, G. & Jentsch, S. The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP. EMBO Rep. 4, 1169–1174 (2003)

    Article  Google Scholar 

  8. Yashiroda, H. & Tanaka, K. Hub1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast. Genes Cells 9, 1189–1197 (2004)

    Article  CAS  Google Scholar 

  9. Benedetti, C., Haynes, C. M., Yang, Y., Harding, H. P. & Ron, D. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229–239 (2006)

    Article  CAS  Google Scholar 

  10. Hazbun, T. R. et al. Assigning function to yeast proteins by integration of technologies. Mol. Cell 12, 1353–1365 (2003)

    Article  CAS  Google Scholar 

  11. Wahl, M. C., Will, C. L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009)

    Article  CAS  Google Scholar 

  12. Ramage, R. et al. Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. Biochem. J. 299, 151–158 (1994)

    Article  CAS  Google Scholar 

  13. Bayer, P. et al. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280, 275–286 (1998)

    Article  CAS  Google Scholar 

  14. Dikic, I., Wakatsuki, S. & Walters, K. J. Ubiquitin-binding domains—from structures to functions. Nature Rev. Mol. Cell Biol. 10, 659–671 (2009)

    Article  CAS  Google Scholar 

  15. Song, J., Zhang, Z., Hu, W. & Chen, Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122–40129 (2005)

    Article  CAS  Google Scholar 

  16. Makarova, O. V., Makarov, E. M. & Luhrmann, R. The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J. 20, 2553–2563 (2001)

    Article  CAS  Google Scholar 

  17. Stevens, S. W. & Abelson, J. Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. Proc. Natl Acad. Sci. USA 96, 7226–7231 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Stevens, S. W. et al. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol. Cell 9, 31–44 (2002)

    Article  CAS  Google Scholar 

  19. Fabrizio, P. et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol. Cell 36, 593–608 (2009)

    Article  CAS  Google Scholar 

  20. Clark, T. A., Sugnet, C. W. & Ares, M., Jr Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296, 907–910 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Burckin, T. et al. Exploring functional relationships between components of the gene expression machinery. Nature Struct. Mol. Biol. 12, 175–182 (2005)

    Article  CAS  Google Scholar 

  22. Keren, H., Lev-Maor, G. & Ast, G. Alternative splicing and evolution: diversification, exon definition and function. Nature Rev. Genet. 11, 345–355 (2010)

    Article  CAS  Google Scholar 

  23. Jacquier, A., Rodriguez, J. R. & Rosbash, M. A quantitative analysis of the effects of 5′ junction and TACTAAC box mutants and mutant combinations on yeast mRNA splicing. Cell 43, 423–430 (1985)

    Article  CAS  Google Scholar 

  24. Lesser, C. F. & Guthrie, C. Mutational analysis of pre-mRNA splicing in Saccharomyces cerevisiae using a sensitive new reporter gene, CUP1 . Genetics 133, 851–863 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, M. & Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature Rev. Mol. Cell Biol. 10, 741–754 (2009)

    Article  CAS  Google Scholar 

  26. Davis, C. A., Grate, L., Spingola, M. & Ares, M. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Res. 28, 1700–1706 (2000)

    Article  CAS  Google Scholar 

  27. Rodríguez-Navarro, S., Igual, J. C. & Pérez-Ortín, J. E. SRC1: an intron-containing yeast gene involved in sister chromatid segregation. Yeast 19, 43–54 (2002)

    Article  Google Scholar 

  28. Grund, S. E. et al. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J. Cell Biol. 182, 897–910 (2008)

    Article  CAS  Google Scholar 

  29. Kuhn, A. N. & Kaufer, N. F. Pre-mRNA splicing in Schizosaccharomyces pombe: regulatory role of a kinase conserved from fission yeast to mammals. Curr. Genet. 42, 241–251 (2003)

    CAS  PubMed  Google Scholar 

  30. Okazaki, K. & Niwa, O. mRNAs encoding zinc finger protein isoforms are expressed by alternative splicing of an in-frame intron in fission yeast. DNA Res. 7, 27–30 (2000)

    Article  CAS  Google Scholar 

  31. Kress, T. L., Krogan, N. J. & Guthrie, C. A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast. Mol. Cell 32, 727–734 (2008)

    Article  CAS  Google Scholar 

  32. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999)

    Article  CAS  Google Scholar 

  33. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004)

    Article  CAS  Google Scholar 

  34. Hagan, I. M. & Ayscough, K. R. in Protein Localization by Fluorescence Microscopy: A Practical Approach (ed Allan, V. J.) 179–205 (Oxford Univ. Press, 2000)

    Google Scholar 

  35. Ansari, A. & Schwer, B. SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J. 14, 4001–4009 (1995)

    Article  CAS  Google Scholar 

  36. Steen, H. & Mann, M. The abc’s (and xyz’s) of peptide sequencing. Nature Rev. Mol. Cell Biol. 5, 699–711 (2004)

    Article  CAS  Google Scholar 

  37. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  38. Collaborative Computational Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  39. McRee, D. E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999)

    Article  CAS  Google Scholar 

  40. Lamzin, V. S. Automated refinement of protein models. Acta Crystallogr. D 49, 129–147 (1993)

    Article  CAS  Google Scholar 

  41. Liu, M. et al. Improved WATERGATE pulse sequences for solvent suppresion in NMR spectroscopy. J. Magn. Reson. 132, 125–129 (1998)

    Article  ADS  CAS  Google Scholar 

  42. Mori, S., Abeygunawardana, C., Johnson, M. O. & van Zijl, P. C. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. B. 108, 94–98 (1995)

    Article  CAS  Google Scholar 

  43. Zhu, G., Kong, X. M. & Sze, K. H. Gradient and sensitivity enhancement of 2D TROSY with water flip-back, 3D NOESY-TROSY and TOCSY-TROSY experiments. J. Biomol. NMR 13, 77–81 (1999)

    Article  CAS  Google Scholar 

  44. Pervushin, K. V., Wider, G. & Wüthrich, K. Single transition-to-single transition polarization transfer (ST2-PT) in [15N,1H]-TROSY. J. Biomol. NMR 12, 345–348 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Cramer and M. Kost for technical assistance, G. Dittmar, C. Guthrie, M. Konarska, K. Matuschewski, O. Nielsen, M. Rosbash and H. Yashiroda for materials, S. Uebel and C. Boulegue for mass spectrometric analysis and help, K. Hofmann for pointing out putative HIND elements in Prp38 proteins of plants, and M. Singh for initiating structural work. S.J. is supported by the Max Planck Society, Deutsche Forschungsgemeinschaft, Fonds der chemischen Industrie, Center for Integrated Protein Science Munich and RUBICON EU Network of Excellence; T.A.H. by the Max Planck Society; M.A. by NIH (GM040478).

Author information

Authors and Affiliations

Authors

Contributions

S.K.M. (S. cerevisiae, S. pombe), T.A. (mammalian) and S.J. designed, obtained and analysed the genetic, biochemical and functional data; G.M.P, M.K. and T.A.H. the structural data; R.J.N. and M.A. Jr the splicing array data. S.J. and S.K.M. wrote the paper, and all authors contributed to the manuscript.

Corresponding author

Correspondence to Stefan Jentsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Coordinates and the experimental structural factors of both complexes have been deposited in the PDB under the following codes: Hub1–HIND-I, 3PLU; Hub1–HIND-II, 3PLV.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 with legends, Supplementary Tables 1-3 and additional references. (PDF 7396 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Ammon, T., Popowicz, G. et al. Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 474, 173–178 (2011). https://doi.org/10.1038/nature10143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10143

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing