Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-ion quantum lock-in amplifier

Abstract

Quantum metrology1 uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations—modulation, detection and mixing—are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr+ ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz−1/2 (corresponding to a magnetic field measurement sensitivity of 15 pT Hz−1/2), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies2,3 by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation4, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement scheme.
Figure 2: Sensitivity of the quantum lock-in measurement.
Figure 3: Lock-in measurement of a small signal.
Figure 4: Light shift spectroscopy.

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Degen, C. Nanoscale magnetometry microscopy with single spins. Nature Nanotechnol. 3, 643–644 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Fortson, N. Possibility of measuring parity nonconservation with a single trapped atomic ion. Phys. Rev. Lett. 70, 2383–2386 (1993)

    Article  ADS  CAS  Google Scholar 

  5. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Knünz, S. et al. Injection locking of a trapped-ion phonon laser. Phys. Rev. Lett. 105, 013004 (2010)

    Article  ADS  Google Scholar 

  7. Kielpinski, D. et al. A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Roos, C. F. et al. Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997)

    Article  ADS  CAS  Google Scholar 

  13. André, A., Sørensen, A. S. & Lukin, M. D. Stability of atomic clocks based on entangled atoms. Phys. Rev. Lett. 92, 230801 (2004)

    Article  ADS  Google Scholar 

  14. Wineland, D. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998)

    Article  CAS  Google Scholar 

  15. Uys, H., Biercuk, M. J. & Bollinger, J. J. Optimized noise filtration through dynamical decoupling. Phys. Rev. Lett. 103, 040501 (2009)

    Article  ADS  Google Scholar 

  16. Biercuk, M. J. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Gordon, G., Erez, N. & Kurizki, G. Universal dynamical decoherence control of noisy single-and multi-qubit systems. J. Phys. At. Mol. Opt. Phys. 40, S75–S93 (2007)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Sagi, Y., Almog, I. & Davidson, N. Process tomography of dynamical decoupling in a dense cold atomic ensemble. Phys. Rev. Lett. 105, 053201 (2010)

    Article  ADS  Google Scholar 

  19. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–648 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Hall, L. T., Hill, C. D., Cole, J. H. & Hollenberg, L. C. L. Ultrasensitive diamond magnetometry using optimal dynamic decoupling. Phys. Rev. B 82, 045208 (2010)

    Article  ADS  Google Scholar 

  21. Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201(R) (2011)

    Article  ADS  Google Scholar 

  22. de Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse dynamical decoupling sequences. Phys. Rev. Lett. 106, 080802 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Riley, W. J. Handbook of Frequency Stability Analysis. NIST Spec. Publ. 1065 (US Department of Commerce, National Institute of Standards and Technology, 2008)

    Book  Google Scholar 

  24. Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983)

    Article  ADS  Google Scholar 

  25. Zipkes, C., Palzer, S., Sias, C. & Koehl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Schmid, S., Härter, A. & Denschlag, J. H. Dynamics of a cold trapped ion in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010)

    Article  ADS  Google Scholar 

  27. Oskay, W. H., Itano, W. M. & Bergquist, J. C. Measurement of the 199Hg+ 5d96s2 2D 5/2 electric quadrupole moment and a constraint on the quadrupole shift. Phys. Rev. Lett. 94, 163001 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Bensky, G. Gordon and G. Kurizki for discussions. We acknowledge the support by the ISF Morasha program, the Crown Photonics Center and the Minerva Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the building of the experimental apparatus. S.K. led the data-taking effort, with help from N.A. Data analysis and development of the analytic theory were performed by S.K. S.K. and R.O. wrote the manuscript. R.O. designed the experiment and supervised the work. All authors participated in discussions, contributed ideas along the way and edited the manuscript.

Corresponding author

Correspondence to Shlomi Kotler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains a Supplementary Discussion, Supplementary Equations and Supplementary Plots. (PDF 540 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotler, S., Akerman, N., Glickman, Y. et al. Single-ion quantum lock-in amplifier. Nature 473, 61–65 (2011). https://doi.org/10.1038/nature10010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10010

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing