Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Soret effect and isotopic fractionation in high-temperature silicate melts

Abstract

Diffusion in condensed phases is a ubiquitous but poorly understood phenomenon. For example, chemical diffusion, which is the transport of matter associated with chemical concentration gradients (Fick’s law), is treated as a separate process from thermal transport (the Soret effect), which is mass transport induced by temperature gradients. In the past few years, large variations in the proportions of isotopes of Mg, Ca, Fe, Si and O found in silicate melts subject to thermal gradients have been found1,2,3, but no physical mechanism has been proposed. Here we present a model of diffusion in natural condensed systems that explains both the chemical and isotopic fractionation of Mg, Ca and Fe in high-temperature geochemical melts. Despite the high temperatures associated with these melts (T > 1,000 °C), we find that consideration of the quantum-mechanical zero-point energy of diffusing species is essential for understanding diffusion at the isotopic level. Our model explains thermal and chemical mass transport as manifestations of the same underlying diffusion mechanism. This work promises to provide insights into mass-transport phenomena (diffusion and evaporation) and associated isotopic fractionations in a wide range of natural condensed systems, including the atmospheric water cycle1,2, geological and geochemical systems3,4,5,6 and the early Solar System4. This work might also be relevant to studies of mass transport in biological7,8 and nanotechnological condensed systems9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diffusion of elements as a random hopping process in a silicate melt.
Figure 2: Model predictions and observations of isotopic fractionation of Mg, Fe, Ca, Si and O in silicate melts (a-f).

Similar content being viewed by others

References

  1. Luz, B., Barkan, E., Yam, R. & Shemesh, A. Fractionation of oxygen and hydrogen isotopes in evaporating water. Geochim. Cosmochim. Acta 73, 6697–6703 (2009)

    Article  ADS  CAS  Google Scholar 

  2. Uemura, R., Barkan, E., Abe, O. & Luz, B. Triple isotope composition of oxygen in atmospheric water vapor. Geophys. Res. Lett. 37, L04402 (2010)

    Article  ADS  Google Scholar 

  3. Richter, F. M., Dauphas, N. & Teng, F.-Z. Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem. Geol. 258, 92–103 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Richter, F. M., Janney, P. E., Mendybaev, R. A., Davis, A. M. & Wadhwa, M. Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta 71, 5544–5564 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Richter, F. M. et al. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochim. Cosmochim. Acta 73, 4250–4263 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Richter, F. M., Watson, E. B., Mendybaev, R. A., Teng, F.-Z. & Janney, P. E. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim. Cosmochim. Acta 72, 206–220 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Braun, D. & Libchaber, A. Thermal force approach to molecular evolution. Phys. Biol. 1, 1–8 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Korkotian, E. & Segal, M. Spatially confined diffusion of calcium in dendrites of hippocampal neurons revealed by flash photolysis of caged calcium. Cell Calcium 40, 441–449 (2006)

    Article  CAS  Google Scholar 

  9. Duhr, S. & Braun, D. Thermophoretic depletion follows Boltzmann distribution. Phys. Rev. Lett. 96, 168301 (2006)

    Article  ADS  Google Scholar 

  10. Duhr, S. & Braun, D. Why molecules move along a temperature gradient. Proc. Natl Acad. Sci. USA 103, 19678–19682 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Soret, C. Sur l'etat d'equilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohene dont deux parties sont portees a des temperatures differentes. Arch. Sci. Phys. Nat. 2, 48–61 (1879)

    Google Scholar 

  12. Walker, D. & Delong, S. E. Soret separation of mid-ocean ridge basalt magma. Contrib. Mineral. Petrol. 79, 231–240 (1982)

    Article  ADS  CAS  Google Scholar 

  13. Lesher, C. E. & Walker, D. Solution properties of silicate liquids from thermal diffusion experiments. Geochim. Cosmochim. Acta 50, 1397–1411 (1986)

    Article  ADS  CAS  Google Scholar 

  14. Huang, F. Chemical and isotopic fractionation of wet andesite in a temperature gradient: experiments and models suggesting a new mechanism of magma differentiation. Geochim. Cosmochim. Acta 73, 729–749 (2009)

    Article  ADS  CAS  Google Scholar 

  15. Huang, F. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS. Chem. Geol. 268, 15–23 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Huang, F. et al. Isotope fractionation in silicate melts by thermal diffusion. Nature 464, 396–400 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Vashishta, P., Kalia, R. K. & Rino, J. P. Interaction potential for SiO2: A molecular-dynamics study of structural correlations. Phys. Rev. B 41, 12197–12209 (1990)

    Article  ADS  CAS  Google Scholar 

  18. LaTourrette, T., Wasserburg, G. J. & Fahey, A. J. Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochim. Cosmochim. Acta 60, 1329–1340 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Truhlar, D. G., Garrett, B. C. & Klippenstein, S. J. Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800 (1996)

    Article  CAS  Google Scholar 

  20. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)

    Article  ADS  CAS  Google Scholar 

  21. Wert, C. & Zener, C. Interstitial atomic diffusion coefficients. Phys. Rev. 76, 1169–1175 (1949)

    Article  ADS  CAS  Google Scholar 

  22. Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957)

    Article  ADS  CAS  Google Scholar 

  23. Roselieb, K. & Jambon, A. Tracer diffusion of potassium, rubidium, and cesium in a supercooled jadeite melt. Geochim. Cosmochim. Acta 61, 3101–3110 (1997)

    Article  ADS  Google Scholar 

  24. Chakraborty, S. Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annu. Rev. Earth Planet. Sci. 36, 153–190 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Watson, E. B. & Baxter, E. F. Diffusion in solid-Earth systems. Earth Planet. Sci. Lett. 253, 307–327 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Pathria, R. K. Statistical Mechanics, 2nd ed. (Butterworth-Heinemann, 1996)

    MATH  Google Scholar 

  27. Kubicki, J. D. & Lasaga, A. C. Molecular dynamics simulations of SiO2 melt and glass: ionic and covalent models. Am. Mineral. 73, 941–955 (1988)

    CAS  Google Scholar 

  28. Landsberg, P. T. D grad v or grad(Dv)? J. Appl. Phys. 56, 1119–1122 (1984)

    Article  ADS  Google Scholar 

  29. van Milligen, B. P., Bons, P. D., Carreras, B. A. & Sanchez, R. On the applicability of Fick's law to diffusion in inhomogeneous systems. Eur. J. Phys. 26, 913–925 (2005)

    Article  Google Scholar 

  30. Astumian, R. D. Coupled transport at the nanoscale: the unreasonable effectiveness of equilibrium theory. Proc. Natl Acad. Sci. USA 104, 3–4 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Frank Richter for introducing us to this problem. We thank C. Lundstrom, E. Schauble, S. Chakraborty, A. Fnu and R. Shaheen for discussions. G.D. acknowledges support from the University of California President’s Fellowship and NASA grants NNX07AM66G and NNX08AI15G.

Author information

Authors and Affiliations

Authors

Contributions

G.D. led the theoretical work. G.W. and G.D. developed and performed numerical simulations, and G.D., G.W. and M.H.T. wrote the manuscript.

Corresponding author

Correspondence to Gerardo Dominguez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3 and Supplementary Text and Data. (PDF 294 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, G., Wilkins, G. & Thiemens, M. The Soret effect and isotopic fractionation in high-temperature silicate melts. Nature 473, 70–73 (2011). https://doi.org/10.1038/nature09911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09911

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing