Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of the chromatin remodelling factor ISW1a

Abstract

Site-specific recognition of DNA in eukaryotic organisms depends on the arrangement of nucleosomes in chromatin. In the yeast Saccharomyces cerevisiae, ISW1a and related chromatin remodelling factors are implicated in establishing the nucleosome repeat during replication and altering nucleosome position to affect gene activity. Here we have solved the crystal structures of S. cerevisiae ISW1a lacking its ATPase domain both alone and with DNA bound at resolutions of 3.25 Å and 3.60 Å, respectively, and we have visualized two different nucleosome-containing remodelling complexes using cryo-electron microscopy. The composite X-ray and electron microscopy structures combined with site-directed photocrosslinking analyses of these complexes suggest that ISW1a uses a dinucleosome substrate for chromatin remodelling. Results from a remodelling assay corroborate the dinucleosome model. We show how a chromatin remodelling factor could set the spacing between two adjacent nucleosomes acting as a ‘protein ruler’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ISW1a(ΔATPase) X-ray structure.
Figure 2: ISW1a(ΔATPase)–DNA X-ray structure.
Figure 3: ISW1a(ΔATPase)–mononucleosome cryo-EM structures.
Figure 4: Gel mobility and site-directed photocrosslinking of ISW1a(ΔATPase) bound to mononucleosomes.
Figure 5: Model of ISW1a(ΔATPase) bound to a dinucleosome and ISW1a remodelling reaction.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

X-ray structures have been deposited in the Protein Data Bank under accession numbers 2y9y (ISW1a(ΔATPase)) and 2y9z (ISW1a(ΔATPase)–DNA), respectively. Cryo-EM maps have been deposited in the Electron Microscopy Data Bank under accession codes 1877 and 1878.

References

  1. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235–1244 (2007)

    Article  CAS  Google Scholar 

  2. Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008)

    Article  CAS  Google Scholar 

  3. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Sasaki, S. et al. Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323, 401–404 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008)

    Article  CAS  Google Scholar 

  7. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009)

    Article  CAS  Google Scholar 

  8. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae . Genes Dev. 13, 686–697 (1999)

    Article  CAS  Google Scholar 

  9. Vary, J. C., Jr et al. Yeast Isw1p forms two separable complexes in vivo . Mol. Cell. Biol. 23, 80–91 (2003)

    Article  CAS  Google Scholar 

  10. Fyodorov, D. V. & Kadonaga, J. T. Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418, 896–900 (2002)

    Article  ADS  Google Scholar 

  11. Eberharter, A. et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J. 20, 3781–3788 (2001)

    Article  CAS  Google Scholar 

  12. Mizuguchi, G., Tsukiyama, T., Wisniewski, J. & Wu, C. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell 1, 141–150 (1997)

    Article  CAS  Google Scholar 

  13. Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002)

    Article  CAS  Google Scholar 

  14. Lusser, A. & Kadonaga, J. T. Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25, 1192–1200 (2003)

    Article  CAS  Google Scholar 

  15. Corona, D. F. & Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113–119 (2004)

    Article  CAS  Google Scholar 

  16. Mellor, J. & Morillon, A. ISWI complexes in Saccharomyces cerevisiae . Biochim. Biophys. Acta 1677, 100–112 (2004)

    Article  CAS  Google Scholar 

  17. Dürr, H., Korner, C., Muller, M., Hickmann, V. & Hopfner, K. P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005)

    Article  Google Scholar 

  18. Thomä, N. H. et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nature Struct. Mol. Biol. 12, 350 (2005)

    Article  Google Scholar 

  19. Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003)

    Article  Google Scholar 

  20. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008)

    Article  CAS  Google Scholar 

  21. Horton, J. R. et al. Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI. Proteins 67, 1198–1202 (2007)

    Article  CAS  Google Scholar 

  22. Cuperus, G. & Shore, D. Restoration of silencing in Saccharomyces cerevisiae by tethering of a novel Sir2-interacting protein, Esc8. Genetics 162, 633–645 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Ogata, K. et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79, 639–648 (1994)

    Article  CAS  Google Scholar 

  25. Tahirov, T. H. et al. Mechanism of c-Myb-C/EBPβ cooperation from separated sites on a promoter. Cell 108, 57–70 (2002)

    Article  CAS  Google Scholar 

  26. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998)

    Article  CAS  Google Scholar 

  27. Davey, C. A., Sargent, D. F., Luger, K., Mäder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002)

    Article  CAS  Google Scholar 

  28. Wang, J. P. et al. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae . PLOS Comput. Biol. 4, e1000175 (2008)

    Article  MathSciNet  Google Scholar 

  29. Gangaraju, V. K. & Bartholomew, B. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol. Cell. Biol. 27, 3217–3225 (2007)

    Article  CAS  Google Scholar 

  30. Flaus, A., Luger, K., Tan, S. & Richmond, T. J. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc. Natl Acad. Sci. USA 93, 1370–1375 (1996)

    Article  ADS  CAS  Google Scholar 

  31. Luger, K., Maeder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997)

    Article  ADS  CAS  Google Scholar 

  32. Makde, R. D., England, J. R., Yennawar, H. P. & Tan, S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–566 (2010)

    Article  ADS  CAS  Google Scholar 

  33. Ong, M. S., Richmond, T. J. & Davey, C. A. DNA stretching and extreme kinking in the nucleosome core. J. Mol. Biol. 368, 1067–1074 (2007)

    Article  CAS  Google Scholar 

  34. Vasudevan, D., Chua, E. Y. D. & Davey, C. A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 403, 1–10 (2010)

    Article  CAS  Google Scholar 

  35. Morillon, A. et al. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115, 425–435 (2003)

    Article  CAS  Google Scholar 

  36. Pinskaya, M., Nair, A., Clynes, D., Morillon, A. & Mellor, J. Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae . Mol. Cell. Biol. 29, 2419–2430 (2009)

    Article  CAS  Google Scholar 

  37. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006)

    Article  CAS  Google Scholar 

  38. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  CAS  Google Scholar 

  39. Berger, I., Fitzgerald, D. J. & Richmond, T. J. Baculovirus expression system for heterologous multiprotein complexes. Nature Biotechnol. 22, 1583–1587 (2004)

    Article  CAS  Google Scholar 

  40. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  41. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  Google Scholar 

  42. Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Cryst. 37, 843–844 (2004)

    Article  CAS  Google Scholar 

  43. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003)

    Article  CAS  Google Scholar 

  44. Abrahams, J. P. & Leslie, A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996)

    Article  CAS  Google Scholar 

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  46. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  47. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: Semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  CAS  Google Scholar 

  48. Frank, J. et al. SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    Article  CAS  Google Scholar 

  49. Pettersen, E. F. et al. UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  Google Scholar 

  50. Bieniossek, C., Richmond, T. J. & Berger, I. in Curr. Prot. Protein Sci. 5.20.21–5.20.26 (John Wiley & Sons, 2008)

    Google Scholar 

  51. Luger, K., Rechsteiner, T. J. & Richmond, T. J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1–16 (1999)

    CAS  PubMed  Google Scholar 

  52. Bellizzi, J. J., Widom, J., Kemp, C. W. & Clardy, J. Producing selenomethionine-labeled proteins with a baculovirus expression vector system. Structure 7, R263–R267 (1999)

    Article  CAS  Google Scholar 

  53. Van Heel, M. Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–123 (1987)

    Article  CAS  Google Scholar 

  54. Unser, M. et al. Spectral signal-to-noise ratio and resolution assessment of 3D reconstructions. J. Struct. Biol. 149, 243–255 (2005)

    Article  CAS  Google Scholar 

  55. Hu, D., Crist, M., Duan, X., Quiocho, F. A. & Gimble, F. S. Probing the structure of the PI-SceI-DNA complex by affinity cleavage and affinity photocross-linking. J. Biol. Chem. 275, 2705–2712 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Blattmann for help in crystal screening (NCCR Structural Biology crystallization facility), C. Schulze-Briese and T. Tomizaki (SLS, Paul Scherrer Institute) for assistance in X-ray data collection, and the ETH Zurich Electron Microscopy Center for assistance in EM data collection. K.Y. appreciates support from the Toyobo Biofoundation and the Uehara Memorial Foundation, and discussion with T. Maier. T.J.R. is grateful to T. Tsukiyama for discussion and materials. We appreciate the financial support from the Swiss National Science Fond and the NCCR Structural Biology.

Author information

Authors and Affiliations

Authors

Contributions

K.Y. was responsible for X-ray crystallography. T.D.F. was responsible for electron microscopy. B.A. was responsible for mobility assays, site-directed photocrosslinking and hydroxyl radical footprinting. D.J.F. and C.D. designed and expressed the first constructs of ISW1a(ΔATPase) and carried out biochemical analyses. K.Y. and B.A. designed the specific ISW1a constructs essential to the X-ray crystallography and electron microscopy, and to the photocrosslinking and footprinting, respectively. K.S. provided biochemical technical assistance. D.F.S. provided assistance for X-ray data collection. T.J.R. conceived the project, supervised and constructed the dinucleosome model. T.J.R. prepared the manuscript with major contributions from K.Y., T.D.F. and B.A. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Timothy J. Richmond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 with legends and Supplementary Table 1.Supplementary Figures 7-9 were omitted when this paper first appeared online and were added on 06 May 2011. (PDF 16356 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Frouws, T., Angst, B. et al. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472, 448–453 (2011). https://doi.org/10.1038/nature09947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09947

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing