Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communications Arising
  • Published:

Nowak et al. reply

Abstract

Replying to: P. Abbot et al. Nature 471, 10.1038/nature09831 (2011); J. J. Boomsma et al. Nature 471, 10.1038/nature09832 (2011); J. E. Strassmann et al. Nature 471, 10.1038/nature09833 (2011); R. Ferriere & R. E. Michod Nature 471, 10.1038/nature09834 (2011); E. A. Herre & W. T. Wcislo Nature 471, 10.1038/nature09835 (2011)

Our paper challenges the dominant role of inclusive fitness theory in the study of social evolution1. We show that inclusive fitness theory is not a constructive theory that allows a useful mathematical analysis of evolutionary processes. For studying the evolution of cooperation or eusociality we must instead rely on evolutionary game theory or population genetics. The authors of the five comments2,3,4,5,6 offer the usual defence of inclusive fitness theory, but do not take into account our new results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality. Nature 466, 1057–1062 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Abbot, P. et al. Inclusive fitness theory and eusociality. Nature 471 10.1038/nature09831 (2011)

  3. Boomsma, J. J. et al. Only full-sibling families evolved eusociality. Nature 471 10.1038/nature09832 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Strassmann, J. E., Page, R. E., Jr, Robinson, G. E. & Seeley, T. D. Kin selection and eusociality. Nature 471 10.1038/nature09833 (2011)

  5. Ferriere, R. & Michod, R. E. Inclusive fitness in evolution. Nature 471 10.1038/nature09834 (2011)

  6. Herre, E. A. & Wcislo, W. T. In defence of inclusive fitness theory. Nature 471 10.1038/nature09835 (2011)

  7. Hamilton, W. D. The genetical evolution of social behaviour, I, II. J. Theor. Biol. 7, 1–52 (1964)

    Article  CAS  Google Scholar 

  8. Cavalli-Sforza, L. L. & Feldman, M. W. Darwinian selection and “altruism”. Theor. Popul. Biol. 14, 268–280 (1978)

    Article  CAS  Google Scholar 

  9. Karlin, S. & Matessi, C. Kin selection and altruism. Proc. R. Soc. Lond. B 219, 327–353 (1983)

    Article  ADS  Google Scholar 

  10. Queller, D. C. A general model for kin selection. Evolution 46, 376–380 (1992)

    Article  Google Scholar 

  11. Chuang, J. S., Rivoire, O. & Leibler, S. Cooperation and Hamilton’s rule in a simple synthetic microbial system. Mol. Syst. Biol. 6, 398 (2010)

    Article  Google Scholar 

  12. Traulsen, A. Mathematics of kin- and group-selection: Formally equivalent? Evolution 64, 316–323 (2010)

    Article  Google Scholar 

  13. Nowak, M. A., Tarnita, C. E. & Antal, T. Evolutionary dynamics in structured populations. Phil. Trans. R. Soc. B 365, 19–30 (2010)

    Article  Google Scholar 

  14. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Diggle, S. P., Griffin, A. S., Campell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Smith, J., van Dyken, J. D. & Zee, P. C. A generalization of Hamilton’s rule for the evolution of microbial cooperation. Science 328, 1700–1703 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Michener, C. D. The Social Behavior of the Bees (Harvard Univ. Press, 1974)

    Google Scholar 

  18. Wcislo, W. T. Social interactions and behavioral context in a largely solitary bee, Lasioglossum (Dialictus) figueresi (Hymenoptera, Halictidae). Insectes Soc. 44, 199–208 (1997)

    Article  Google Scholar 

  19. Jeanson, R., Kukuk, P. F. & Fewell, J. H. Emergence of division of labour in halictine bees: Contributions of social interactions and behavioural variance. Anim. Behav. 70, 1183–1193 (2005)

    Article  Google Scholar 

  20. Sakagami, S. F. & Maeta, Y. Sociality, induced and/or natural, in the basically solitary small carpenter bees (Ceratina). In Animal Societies: Theories and Facts (eds Itô, Y., Brown, J. L. & Kikkawa, J. ) 1–16 (Japan Scientific Societies Press, 1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.A.N., C.E.T. and E.O.W. collaborated on all aspects of this reply.

Corresponding author

Correspondence to Martin A. Nowak.

Ethics declarations

Competing interests

Competing financial interests: declared none.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, M., Tarnita, C. & Wilson, E. Nowak et al. reply. Nature 471, E9–E10 (2011). https://doi.org/10.1038/nature09836

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09836

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing