Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of the hexameric MecA–ClpC molecular machine

Abstract

Regulated proteolysis by ATP-dependent proteases is universal in all living cells. Bacterial ClpC, a member of the Clp/Hsp100 family of AAA+ proteins (ATPases associated with diverse cellular activities) with two nucleotide-binding domains (D1 and D2), requires the adaptor protein MecA for activation and substrate targeting. The activated, hexameric MecA–ClpC molecular machine harnesses the energy of ATP binding and hydrolysis to unfold specific substrate proteins and translocate the unfolded polypeptide to the ClpP protease for degradation. Here we report three related crystal structures: a heterodimer between MecA and the amino domain of ClpC, a heterododecamer between MecA and D2-deleted ClpC, and a hexameric complex between MecA and full-length ClpC. In conjunction with biochemical analyses, these structures reveal the organizational principles behind the hexameric MecA–ClpC complex, explain the molecular mechanisms for MecA-mediated ClpC activation and provide mechanistic insights into the function of the MecA–ClpC molecular machine. These findings have implications for related Clp/Hsp100 molecular machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A binary complex between MecA121 and the ClpC N domain.
Figure 2: Structure of the hexameric complex between MecA121 and ClpC-ΔD2.
Figure 3: Recognition interface between MecA121 and ClpC-ΔD2.
Figure 4: Architecture of the MecA–ClpC molecular machine.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors of the ClpC N domain, the MecA121–ClpC N-domain complex, the hexameric complex of MecA121–ClpC-ΔD2 and the hexameric complex of MecA108–ClpC have been deposited in the Protein Data Bank with the accession codes 2Y1Q, 2Y1R, 3PXG and 3PXI, respectively.

References

  1. Baker, T. A. & Sauer, R. T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31, 647–653 (2006)

    Article  CAS  Google Scholar 

  2. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009)

    Article  CAS  Google Scholar 

  3. Goldberg, A. L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17 (2007)

    Article  CAS  Google Scholar 

  4. Kirstein, J., Moliere, N., Dougan, D. A. & Turgay, K. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nature Rev. Microbiol. 7, 589–599 (2009)

    Article  CAS  Google Scholar 

  5. Inobe, T. & Matouschek, A. Protein targeting to ATP-dependent proteases. Curr. Opin. Struct. Biol. 18, 43–51 (2008)

    Article  CAS  Google Scholar 

  6. Groll, M., Bochtler, M., Brandstetter, H., Clausen, T. & Huber, R. Molecular machines for protein degradation. ChemBioChem 6, 222–256 (2005)

    Article  CAS  Google Scholar 

  7. Barends, T. R., Werbeck, N. D. & Reinstein, J. Disaggregases in 4 dimensions. Curr. Opin. Struct. Biol. 20, 46–53 (2010)

    Article  CAS  Google Scholar 

  8. Doyle, S. M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34, 40–48 (2009)

    Article  CAS  Google Scholar 

  9. Haslberger, T., Bukau, B. & Mogk, A. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem. Cell Biol. 88, 63–75 (2010)

    Article  CAS  Google Scholar 

  10. Lee, S., Sowa, M. E., Choi, J. M. & Tsai, F. T. The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine. J. Struct. Biol. 146, 99–105 (2004)

    Article  CAS  Google Scholar 

  11. Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003)

    Article  CAS  Google Scholar 

  12. Lee, S., Choi, J. M. & Tsai, F. T. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Mol. Cell 25, 261–271 (2007)

    Article  CAS  Google Scholar 

  13. Lee, S., Sielaff, B., Lee, J. & Tsai, F. T. CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc. Natl Acad. Sci. USA 107, 8135–8140 (2010)

    Article  CAS  ADS  Google Scholar 

  14. Wendler, P. et al. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 131, 1366–1377 (2007)

    Article  CAS  Google Scholar 

  15. Wendler, P. et al. Motor mechanism for protein threading through Hsp104. Mol. Cell 34, 81–92 (2009)

    Article  CAS  Google Scholar 

  16. Wendler, P. & Saibil, H. R. Cryo electron microscopy structures of Hsp100 proteins: crowbars in or out? Biochem. Cell Biol. 88, 89–96 (2010)

    Article  CAS  Google Scholar 

  17. Kirstein, J. et al. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 25, 1481–1491 (2006)

    Article  CAS  Google Scholar 

  18. Persuh, M., Turgay, K., Mandic-Mulec, I. & Dubnau, D. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol. Microbiol. 33, 886–894 (1999)

    Article  CAS  Google Scholar 

  19. Turgay, K., Hamoen, L. W., Venema, G. & Dubnau, D. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis . Genes Dev. 11, 119–128 (1997)

    Article  CAS  Google Scholar 

  20. Turgay, K., Hahn, J., Burghoorn, J. & Dubnau, D. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17, 6730–6738 (1998)

    Article  CAS  Google Scholar 

  21. Mei, Z. et al. Molecular determinants of MecA as a degradation tag for the ClpCP protease. J. Biol. Chem. 284, 34366–34375 (2009)

    Article  CAS  Google Scholar 

  22. Guo, F., Maurizi, M. R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277, 46743–46752 (2002)

    Article  CAS  Google Scholar 

  23. Li, J. & Sha, B. Crystal structure of the E. coli Hsp100 ClpB N-terminal domain. Structure 11, 323–328 (2003)

    Article  CAS  Google Scholar 

  24. Wang, F. et al. Crystal structure of the MecA degradation tag. J. Biol. Chem. 284, 34376–34381 (2009)

    Article  CAS  Google Scholar 

  25. Guo, F., Esser, L., Singh, S. K., Maurizi, M. R. & Xia, D. Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA. J. Biol. Chem. 277, 46753–46762 (2002)

    Article  CAS  Google Scholar 

  26. Zeth, K. et al. Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA. Nature Struct. Biol. 9, 906–911 (2002)

    Article  CAS  Google Scholar 

  27. Andersson, F. I. et al. Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity. J. Biol. Chem. 281, 5468–5475 (2006)

    Article  CAS  Google Scholar 

  28. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998)

    Article  CAS  Google Scholar 

  29. Yu, R. C., Hanson, P. I., Jahn, R. & Brunger, A. T. Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol. 5, 803–811 (1998)

    Article  CAS  Google Scholar 

  30. Glynn, S. E., Martin, A., Nager, A. R., Baker, T. A. & Sauer, R. T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009)

    Article  CAS  Google Scholar 

  31. Hinnerwisch, J., Fenton, W. A., Furtak, K. J., Farr, G. W. & Horwich, A. L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005)

    Article  CAS  Google Scholar 

  32. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nature Struct. Mol. Biol. 11, 607–615 (2004)

    Article  CAS  Google Scholar 

  33. DeLaBarre, B. & Brunger, A. T. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nature Struct. Biol. 10, 856–863 (2003)

    Article  CAS  Google Scholar 

  34. DeLaBarre, B. & Brunger, A. T. Nucleotide dependent motion and mechanism of action of p97/VCP. J. Mol. Biol. 347, 437–452 (2005)

    Article  CAS  Google Scholar 

  35. Davies, J. M., Brunger, A. T. & Weis, W. I. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16, 715–726 (2008)

    Article  CAS  Google Scholar 

  36. Bruker . SAINT, SADABS, XPREP and SHELXTL/NT Software Reference Manual (Bruker AXS, 2003)

    Google Scholar 

  37. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988)

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  39. Collaborative Computational Project, Number 4 . The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  40. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  Google Scholar 

  41. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  42. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  43. DeLano, W. L. PyMOL Molecular Viewerhttp://www.pymol.org〉 (2002)

    Google Scholar 

  44. Cook, P. F., Neville, M. E., Jr, Vrana, K. E., Hartl, F. T. & Roskoski, R., Jr Adenosine cyclic 3′,5′-monophosphate dependent protein kinase: kinetic mechanism for the bovine skeletal muscle catalytic subunit. Biochemistry 21, 5794–5799 (1982)

    Article  CAS  Google Scholar 

  45. Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999)

    Article  CAS  ADS  Google Scholar 

  46. Kim, Y. I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nature Struct. Biol. 8, 230–233 (2001)

    Article  CAS  Google Scholar 

  47. Cowtan, K. DM: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994)

    Google Scholar 

  48. Cowtan, K. The Buccaneer software for automated model building. Acta Crystallogr. D 62, 1002–1011 (2006)

    Article  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. He and S. Huang at Shanghai Synchrotron Radiation Source and staff at the SPring-8 beamline BL41XU for help. This work was supported by Project 30888001 of the National Natural Science Foundation of China (Y.S.) and Postdoctoral Fellowship #023201058 from the China Postdoctoral Science Foundation (Z.M.).

Author information

Authors and Affiliations

Authors

Contributions

F.W., Z.M., and Y.S. designed all experiments. F.W., Z.M., Y.Q., C.Y., Q.H., and J.W. performed the experiments. All authors analysed the data. F.W., Z.M., J.W. and Y.S. contributed to manuscript preparation. Y.S. wrote the manuscript.

Corresponding authors

Correspondence to Jiawei Wang or Yigong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2 and Supplementary Figures 1-11 with legends. (PDF 1913 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Mei, Z., Qi, Y. et al. Structure and mechanism of the hexameric MecA–ClpC molecular machine. Nature 471, 331–335 (2011). https://doi.org/10.1038/nature09780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09780

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing