Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transport through modes in random media

Subjects

Abstract

Excitations in complex media are superpositions of eigenstates that are referred to as ‘levels’ for quantum systems and ‘modes’ for classical waves. Although the Hamiltonian of a complex system may not be known or solvable, Wigner conjectured1 that the statistics of energy level spacings would be the same as for the eigenvalues of large random matrices. This has explained key characteristics of neutron scattering spectra2. Subsequently, Thouless and co-workers argued3,4 that the metal–insulator transition in disordered systems4,5,6 could be described by a single parameter, the ratio of the average width and spacing of electronic energy levels: when this dimensionless ratio falls below unity, conductivity is suppressed by Anderson localization5 of the electronic wavefunction. However, because of spectral congestion due to the overlap of modes7,8,9, even for localized waves, a comprehensive modal description of wave propagation has not been realized. Here we show that the field speckle pattern10 of transmitted radiation—in this case, a microwave field transmitted through randomly packed alumina spheres—can be decomposed into a sum of the patterns of the individual modes of the medium and the central frequency and linewidth of each mode can be found. We find strong correlation between modal field speckle patterns, which leads to destructive interference between modes. This allows us to explain complexities of steady state and pulsed transmission of localized waves and to harmonize wave and particle descriptions of diffusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurements of transmission through random media.
Figure 2: Total transmission and mode speckle patterns.
Figure 3: Time–frequency analysis.
Figure 4: Dynamics of localized waves.
Figure 5: Localization parameters.

Similar content being viewed by others

References

  1. Wigner, E. P. On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53, 36–67 (1951)

    Article  MathSciNet  Google Scholar 

  2. Dyson, F. J. Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3, 140–156 (1962)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  3. Edwards, J. T. & Thouless, D. J. Numerical studies of localization in disordered systems. J. Phys. Chem. 5, 807–820 (1972)

    Google Scholar 

  4. Thouless, D. J. Maximum metallic resistance in thin wires. Phys. Rev. Lett. 39, 1167–1169 (1977)

    Article  CAS  ADS  Google Scholar 

  5. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  CAS  ADS  Google Scholar 

  6. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)

    Article  ADS  Google Scholar 

  7. Mott, N. F. & Twose, W. D. The theory of impurity conduction. Adv. Phys. 10, 107–163 (1961)

    Article  CAS  ADS  Google Scholar 

  8. Pendry, J. B. Quasi-extended electron states in strongly disordered systems. J. Phys. Chem. 20, 733–742 (1987)

    CAS  Google Scholar 

  9. Bliokh, K., Yu, Bliokh, Yu. P., Freilikher, V., Genack, A. Z. & Sebbah, P. Coupling of localization mode in random media: level repulsion and necklace states. Phys. Rev. Lett. 101, 133901 (2008)

    Article  CAS  ADS  Google Scholar 

  10. Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  11. Altshuler, B. L. & Shklovskii, B. I. Repulsion of energy levels and conductivity of small metal samples. Sov. Phys. JETP 64, 127–135 (1986)

    Google Scholar 

  12. Berry, M. V. Semiclassical theory of spectral rigidity. Proc. R. Soc. Lond. 400, 229–251 (1985)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000)

    Article  CAS  ADS  Google Scholar 

  14. Azbel, M. Eigenstates and properties of random systems in one dimension at zero temperature. Phys. Rev. B 28, 4106–4125 (1983)

    Article  ADS  Google Scholar 

  15. Abrahams, E., ed. 50 Years of Anderson Localization (World Scientific, 2010)

  16. Aspect, A. & Inguscio, M. Anderson localization of ultracold atoms. Phys. Today 62, . 30–35 (2009)

  17. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984)

    Article  ADS  Google Scholar 

  18. Lagendijk, A. van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62. 24–29 (2009)

    Article  CAS  Google Scholar 

  19. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)

    Article  CAS  ADS  Google Scholar 

  20. Grésillon, S. et al. Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999)

    Article  ADS  Google Scholar 

  21. Weaver, R. L. Anderson localization of ultrasound. Wave Motion 12, 129–142 (1990)

    Article  Google Scholar 

  22. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & Van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 945–948 (2008)

    Article  CAS  ADS  Google Scholar 

  23. Mello, P. A., Akkermans, E. & Shapiro, B. Macroscopic approach to correlations in the electronic transmission and reflection from disordered conductors. Phys. Rev. Lett. 61, 459–462 (1988)

    Article  CAS  ADS  Google Scholar 

  24. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988)

    Article  CAS  ADS  Google Scholar 

  25. Nieuwenhuizen & Van Rossum, M. C. Intensity distribution of waves transmitted through a multiple scattering medium. Phys. Rev. Lett. 74, 2674–2677 (1995)

    Article  CAS  ADS  Google Scholar 

  26. Kogan, E. & Kaveh, M. Random-matrix-theory approach to the intensity distributions of waves propagating in a random medium. Phys. Rev. B 52, R3813–R3815 (1995)

    Article  CAS  ADS  Google Scholar 

  27. Stoytchev, M. & Genack, A. Z. Measurement of the probability distribution of total transmission in random waveguides. Phys. Rev. Lett. 79, 309–312 (1997)

    Article  CAS  ADS  Google Scholar 

  28. Ching, E. S. C., Leung, P. T., Suen, W. M., Tong, S. S. & Young, K. Waves in open systems: eigenfunction expansions. Rev. Mod. Phys. 70, 1545–1554 (1998)

    Article  ADS  Google Scholar 

  29. Zhang, Z. Q., Chabanov, A. A., Cheung, S. K., Wong, C. H. & Genack, A. Z. Dynamics of localized waves: pulsed microwave transmissions in quasi-one-dimensional media. Phys. Rev. B 79, 144203 (2009)

    Article  ADS  Google Scholar 

  30. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999)

    Article  CAS  ADS  Google Scholar 

  31. Golub, G. H. & Pereyre, V. Separable nonlinear least squares: the variable projection method and its applications. Inverse Probl. 19, R1–R26 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  32. Sima, D. M. & Huffel, S. V. Separable nonlinear least squares fitting with linear bound constraints and its application in magnetic resonance spectroscopy data quantification. J. Comput. Appl. Math. 203, 264–278 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. Cohen, L. Time-Frequency Analysis (Prentice Hall PTR, 1995)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (DMR0907285).

Author information

Authors and Affiliations

Authors

Contributions

J.W. improved the apparatus, took the data, developed the modal decomposition and the time–frequency analysis algorithms, analysed the data and contributed to writing the paper. A.Z.G. largely conceived and directed the research and wrote the paper.

Corresponding author

Correspondence to Azriel Z. Genack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Genack, A. Transport through modes in random media. Nature 471, 345–348 (2011). https://doi.org/10.1038/nature09824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09824

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing