Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-spin addressing in an atomic Mott insulator

Subjects

Abstract

Ultracold atoms in optical lattices provide a versatile tool with which to investigate fundamental properties of quantum many-body systems. In particular, the high degree of control of experimental parameters has allowed the study of many interesting phenomena, such as quantum phase transitions and quantum spin dynamics. Here we demonstrate how such control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focused laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line, and observed that our addressing scheme leaves the atoms in the motional ground state. The results should enable studies of entropy transport and the quantum dynamics of spin impurities, the implementation of novel cooling schemes, and the engineering of quantum many-body phases and various quantum information processing applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Addressing scheme.
Figure 2: Single-site addressing.
Figure 3: Addressing fidelity.
Figure 4: Ground state tunnelling dynamics.
Figure 5: Tunnelling dynamics of the first excited band.

Similar content being viewed by others

References

  1. Binnig, G. & Rohrer, H. Scanning tunneling microscopy — from birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1987)

    Article  CAS  ADS  Google Scholar 

  2. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Article  CAS  ADS  Google Scholar 

  3. Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)

    Article  CAS  ADS  Google Scholar 

  4. Zvonarev, M. B., Cheianov, V. V. & Giamarchi, T. Spin dynamics in a one-dimensional ferromagnetic Bose gas. Phys. Rev. Lett. 99, 240404 (2007)

    Article  CAS  ADS  Google Scholar 

  5. Recati, A., Fedichev, P. O., Zwerger, W. & Zoller, P. Spin-charge separation in ultracold quantum gases. Phys. Rev. Lett. 90, 020401 (2003)

    Article  CAS  ADS  Google Scholar 

  6. Kleine, A., Kollath, C., McCulloch, I. P., Giamarchi, T. & Schollwöck, U. Spin-charge separation in two-component Bose gases. Phys. Rev. A 77, 013607 (2008)

    Article  ADS  Google Scholar 

  7. Weiss, D. et al. Another way to approach zero entropy for a finite system of atoms. Phys. Rev. A 70, 040302 (2004)

    Article  ADS  Google Scholar 

  8. Bernier, J.-S. et al. Cooling fermionic atoms in optical lattices by shaping the confinement. Phys. Rev. A 79, 061601(R) (2009)

    Article  ADS  Google Scholar 

  9. Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nature Phys. 6, 382–388 (2010)

    Article  CAS  ADS  Google Scholar 

  10. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  11. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  CAS  ADS  Google Scholar 

  12. Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van Den Nest, M. Measurement-based quantum computation. Nature Phys. 5, 19–26 (2009)

    Article  CAS  Google Scholar 

  13. Dumke, R. et al. Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. Phys. Rev. Lett. 89, 097903 (2002)

    Article  CAS  ADS  Google Scholar 

  14. Bergamini, S. et al. Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator. J. Opt. Soc. Am. B 21, 1889–1894 (2004)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  15. Saffman, M. Addressing atoms in optical lattices with Bessel beams. Opt. Lett. 29, 1016–1018 (2004)

    Article  ADS  Google Scholar 

  16. Calarco, T., Dorner, U., Julienne, P. S., Williams, C. J. & Zoller, P. Quantum computations with atoms in optical lattices: marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004)

    Article  ADS  Google Scholar 

  17. Zhang, C., Rolston, S. L. & Das Sarma, S. Manipulation of single neutral atoms in optical lattices. Phys. Rev. A 74, 042316 (2006)

    Article  ADS  Google Scholar 

  18. Joo, J., Lim, Y. L., Beige, A. & Knight, P. L. Single-qubit rotations in two-dimensional optical lattices with multiqubit addressing. Phys. Rev. A 74, 042344 (2006)

    Article  ADS  Google Scholar 

  19. Cho, J. Addressing individual atoms in optical lattices with standing-wave driving fields. Phys. Rev. Lett. 99, 020502 (2007)

    Article  ADS  Google Scholar 

  20. Gorshkov, A. V., Jiang, L., Greiner, M., Zoller, P. & Lukin, M. D. Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 100, 093005 (2008)

    Article  ADS  Google Scholar 

  21. Lundblad, N., Obrecht, J. M., Spielman, I. B. & Porto, J. V. Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nature Phys. 5, 575–580 (2009)

    Article  CAS  ADS  Google Scholar 

  22. Shibata, K., Kato, S., Yamaguchi, A., Uetake, S. & Takahashi, Y. A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice. Appl. Phys. B 97, 753–758 (2009)

    Article  CAS  ADS  Google Scholar 

  23. Scheunemann, R., Cataliotti, F. S., Hänsch, T. W. & Weitz, M. Resolving and addressing atoms in individual sites of a CO2-laser optical lattice. Phys. Rev. A 62, 051801(R) (2000)

    Article  ADS  Google Scholar 

  24. Schrader, D. et al. Neutral atom quantum register. Phys. Rev. Lett. 93, 150501 (2004)

    Article  CAS  ADS  Google Scholar 

  25. Karski, M. et al. Imprinting patterns of neutral atoms in an optical lattice using magnetic resonance techniques. N. J. Phys. 12, 065027 (2010)

    Article  Google Scholar 

  26. Würtz, P., Langen, T., Gericke, T., Koglbauer, A. & Ott, H. Experimental demonstration of single-site addressability in a two-dimensional optical lattice. Phys. Rev. Lett. 103, 080404 (2009)

    Article  ADS  Google Scholar 

  27. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010)

    Article  CAS  ADS  Google Scholar 

  28. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010)

    Article  CAS  ADS  Google Scholar 

  29. Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001)

    Article  CAS  ADS  Google Scholar 

  30. Kuhr, S. et al. Deterministic delivery of a single atom. Science 293, 278–280 (2001)

    Article  CAS  ADS  Google Scholar 

  31. Grünzweig, T., Hilliard, A., McGovern, M. & Andersen, M. F. Near-deterministic preparation of a single atom in an optical microtrap. Nature Phys. 6, 951–954 (2010)

    Article  ADS  Google Scholar 

  32. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    Article  CAS  ADS  Google Scholar 

  33. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    Article  CAS  ADS  Google Scholar 

  34. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  CAS  ADS  Google Scholar 

  35. Fölling, S., Widera, A., Müller, T., Gerbier, F. & Bloch, I. Formation of spatial shell structure in the superfluid to Mott insulator transition. Phys. Rev. Lett. 97, 060403 (2006)

    Article  ADS  Google Scholar 

  36. Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006)

    Article  CAS  ADS  Google Scholar 

  37. Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)

    Article  ADS  Google Scholar 

  38. Karski, M. et al. Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009)

    Article  CAS  ADS  Google Scholar 

  39. Zähringer, F. et al. Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    Article  ADS  Google Scholar 

  40. Schneider, U. et al. Breakdown of diffusion: from collisional hydrodynamics to a continuous quantum walk in a homogeneous Hubbard model. Preprint at 〈http://arXiv.org/abs/1005.3545v1〉 (2010)

  41. Winkler, K. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006)

    Article  CAS  ADS  Google Scholar 

  42. Fölling, S. et al. Direct observation of second-order atom tunnelling. Nature 448, 1029–1032 (2007)

    Article  ADS  Google Scholar 

  43. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Article  CAS  ADS  Google Scholar 

  44. Micheli, A., Daley, A. J., Jaksch, D. & Zoller, P. Single atom transistor in a 1D optical lattice. Phys. Rev. Lett. 93, 140408 (2004)

    Article  CAS  ADS  Google Scholar 

  45. Sherson, J. F. & Mølmer, K. Shaking the entropy out of a lattice: atomic filtering by vibrational excitations. Preprint at 〈http://arXiv.org/abs/1012.1457v1〉 (2010)

  46. Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)

    Article  CAS  ADS  Google Scholar 

  47. Mandel, O. et al. Controlled collisions for multiparticle entanglement of optically trapped atoms. Nature 425, 937–940 (2003)

    Article  CAS  ADS  Google Scholar 

  48. Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    Article  CAS  ADS  Google Scholar 

  49. Isenhower, L. et al. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  CAS  ADS  Google Scholar 

  50. Garwood, M. & DelaBarre, L. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J. Magn. Reson. 153, 155–177 (2001)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Ketterle for discussions and ideas. We acknowledge the help of R. Glöckner and R. Labouvie during the construction of the experiment. We acknowledge funding by MPG, DFG, Stiftung Rheinland-Pfalz für Innovation, Carl-Zeiss Stiftung, EU (NAMEQUAM, AQUTE, Marie Curie Fellowships to J.F.S. and M.C.), and JSPS (Postdoctoral Fellowship for Research Abroad to T.F.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the acquisition and analysis of the data; C.W., M.E., J.F.S., M.C. and S.K. designed and constructed the apparatus; C.W., I.B. and S.K. wrote the manuscript.

Corresponding author

Correspondence to Stefan Kuhr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weitenberg, C., Endres, M., Sherson, J. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011). https://doi.org/10.1038/nature09827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09827

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing