Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis of RNA polymerase II backtracking, arrest and reactivation

Abstract

During gene transcription, RNA polymerase (Pol) II moves forwards along DNA and synthesizes messenger RNA. However, at certain DNA sequences, Pol II moves backwards, and such backtracking can arrest transcription. Arrested Pol II is reactivated by transcription factor IIS (TFIIS), which induces RNA cleavage that is required for cell viability1. Pol II arrest and reactivation are involved in transcription through nucleosomes2,3 and in promoter-proximal gene regulation4,5,6. Here we present X-ray structures at 3.3 Å resolution of an arrested Saccharomyces cerevisiae Pol II complex with DNA and RNA, and of a reactivation intermediate that additionally contains TFIIS. In the arrested complex, eight nucleotides of backtracked RNA bind a conserved ‘backtrack site’ in the Pol II pore and funnel, trapping the active centre trigger loop and inhibiting mRNA elongation. In the reactivation intermediate, TFIIS locks the trigger loop away from backtracked RNA, displaces RNA from the backtrack site, and complements the polymerase active site with a basic and two acidic residues that may catalyse proton transfers during RNA cleavage. The active site is demarcated from the backtrack site by a ‘gating tyrosine’ residue that probably delimits backtracking. These results establish the structural basis of Pol II backtracking, arrest and reactivation, and provide a framework for analysing gene regulation during transcription elongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of arrested Pol II.
Figure 2: Backtracked RNA in the backtrack site.
Figure 3: Structure of reactivation intermediate.
Figure 4: Mechanism of Pol II backtracking, arrest and reactivation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors of the arrested Pol II elongation complex and the arrested Pol II reactivation intermediate have been deposited with the Protein Data Bank under accession numbers 3PO2 and 3PO3, respectively.

References

  1. Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202–210 (2010)

    Article  CAS  Google Scholar 

  2. Kim, J., Guermah, M. & Roeder, R. G. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 140, 491–503 (2010)

    Article  CAS  Google Scholar 

  3. Kireeva, M. L. et al. Nature of the nucleosomal barrier to RNA polymerase II. Mol. Cell 18, 97–108 (2005)

    Article  CAS  Google Scholar 

  4. Adelman, K. et al. Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS. Mol. Cell 17, 103–112 (2005)

    Article  CAS  Google Scholar 

  5. Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila . Science 327, 335–338 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Palangat, M., Renner, D. B., Price, D. H. & Landick, R. A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. Proc. Natl Acad. Sci. USA 102, 15036–15041 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Komissarova, N. & Kashlev, M. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272, 15329–15338 (1997)

    Article  CAS  Google Scholar 

  8. Nudler, E., Mustaev, A., Lukhtanov, E. & Goldfarb, A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89, 33–41 (1997)

    Article  CAS  Google Scholar 

  9. Palangat, M. & Landick, R. Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II. J. Mol. Biol. 311, 265–282 (2001)

    Article  CAS  Google Scholar 

  10. Wang, D. et al. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324, 1203–1206 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292, 1876–1882 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Sluder, A. E., Price, D. H. & Greenleaf, A. L. Elongation by Drosophila RNA Polymerase-II. Transcription of 3′-extended DNA templates. J. Biol. Chem. 263, 9917–9925 (1988)

    CAS  PubMed  Google Scholar 

  13. Johnson, T. L. & Chamberlin, M. J. Complexes of yeast RNA polymerase II and RNA are substrates for TFIIS-induced RNA cleavage. Cell 77, 217–224 (1994)

    Article  CAS  Google Scholar 

  14. Gu, W., Powell, W., Mote, J. J. & Reines, D. Nascent RNA cleavage by arrested RNA polymerase II does not require upstream translocation of the elongation complex on DNA. J. Biol. Chem. 268, 25604–25616 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Izban, M. G. & Luse, D. S. The increment of SII-facilitated transcript cleavage varies dramatically between elongation competent and incompletent RNA polymerase II ternary complexes. J. Biol. Chem. 268, 12874–12885 (1993)

    CAS  PubMed  Google Scholar 

  16. Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640–649 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Bar-Nahum, G. et al. A ratchet mechanism of transcription elongation and its control. Cell 120, 183–193 (2005)

    Article  CAS  Google Scholar 

  18. Brueckner, F. & Cramer, P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nature Struct. Mol. Biol. 15, 811–818 (2008)

    Article  CAS  Google Scholar 

  19. Kettenberger, H., Armache, K.-J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004)

    Article  CAS  Google Scholar 

  20. Vassylyev, D. G. et al. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448, 163–168 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Wang, D., Bushnell, D. A., Westover, K. D., Kaplan, C. D. & Kornberg, R. D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127, 941–954 (2006)

    Article  CAS  Google Scholar 

  22. Markovtsov, V., Mustaev, A. & Goldfarb, A. Protein-RNA interactions in the active center of transcription elongation complex. Proc. Natl Acad. Sci. USA 93, 3221–3226 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Hawryluk, P. J., Ujvari, A. & Luse, D. S. Characterization of a novel RNA polymerase II arrest site which lacks a weak 3′ RNA-DNA hybrid. Nucleic Acids Res. 32, 1904–1916 (2004)

    Article  CAS  Google Scholar 

  24. Sydow, J. F. et al. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell 34, 710–721 (2009)

    Article  CAS  Google Scholar 

  25. Zenkin, N., Yuzenkova, Y. & Severinov, K. Transcript-assisted transcriptional proofreading. Science 313, 518–520 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Toulokhonov, I., Zhang, J. W., Palangat, M. & Landick, R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 27, 406–419 (2007)

    Article  CAS  Google Scholar 

  27. Kettenberger, H., Armache, K.-J. & Cramer, P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114, 347–357 (2003)

    Article  CAS  Google Scholar 

  28. Sosunov, V. et al. Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J. 22, 2234–2244 (2003)

    Article  CAS  Google Scholar 

  29. Weilbaecher, R. G., Awrey, D. E., Edwards, A. M. & Kane, C. M. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J. Biol. Chem. 278, 24189–24199 (2003)

    Article  CAS  Google Scholar 

  30. Awrey, D. E. et al. Yeast transcript elongation factor TFIIS, structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. J. Biol. Chem. 273, 22595–22605 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Brueckner, G. Damsma, K. Kinkelin, D. Kostrewa, L. Larivière, E. Lehmann, F. Martinez, S. Sainsbury and J. Sydow. Part of this work was performed at the Swiss Light Source at the Paul Scherrer Institut, Villigen, Switzerland. P.C. was supported by the Deutsche Forschungsgemeinschaft, SFB646, TR5, FOR1068, NIM, Bioimaging Network BIN, and the Jung-Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

A.C.M.C. carried out experiments. P.C. supervised the project. A.C.M.C. and P.C. prepared the manuscript.

Corresponding author

Correspondence to Patrick Cramer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2, Supplementary Figures 1-3 with legends and additional references. (PDF 523 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, A., Cramer, P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471, 249–253 (2011). https://doi.org/10.1038/nature09785

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09785

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing