Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupled quantized mechanical oscillators

Abstract

The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block in larger models. Realizations of harmonic oscillators in the quantum regime include electromagnetic fields in a cavity1,2,3 and the mechanical modes of a trapped atom4 or macroscopic solid5. Quantized interaction between two motional modes of an individual trapped ion has been achieved by coupling through optical fields6, and entangled motion of two ions in separate locations has been accomplished indirectly through their internal states7. However, direct controllable coupling between quantized mechanical oscillators held in separate locations has not been realized previously. Here we implement such coupling through the mutual Coulomb interaction of two ions held in trapping potentials separated by 40 μm (similar work is reported in a related paper8). By tuning the confining wells into resonance, energy is exchanged between the ions at the quantum level, establishing that direct coherent motional coupling is possible for separately trapped ions. The system demonstrates a building block for quantum information processing and quantum simulation. More broadly, this work is a natural precursor to experiments in hybrid quantum systems, such as coupling a trapped ion to a quantized macroscopic mechanical or electrical oscillator9,10,11,12,13.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micrograph of the ion trap, showing radio-frequency (RF) and d.c. electrodes, and gaps between electrodes (darker areas).
Figure 2: Motional spectroscopy of two coupled ions near the avoided crossing.
Figure 3: Energy swapping between two ions in separate trapping potentials at the level of a few quanta.
Figure 4: Motional exchange between two ions in separate trapping potentials at approximately the single-quantum level.

References

  1. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006)

    Book  Google Scholar 

  2. Miller, R. et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B 38, S551 (2005)

    Article  CAS  Google Scholar 

  3. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. J. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003)

    Article  ADS  CAS  Google Scholar 

  5. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  Google Scholar 

  6. Monroe, C. et al. in Atomic Physics 17 (eds Arimondo, E., De Natale, P. & Inguscio, M. ) 173–186 (Proc. 17th Int. Conf. Atomic Phys., Springer, 2001)

    Google Scholar 

  7. Jost, J. D. et al. Entangled mechanical oscillators. Nature 459, 683–685 (2009)

    Article  ADS  CAS  Google Scholar 

  8. Harlander, M., Lechner, R., Brownnutt, M., Blatt, R. & Hänsel, W. Trapped-ion antennae for the transmission of quantum information. Nature 10.1038/nature09800 (this issue).

  9. Heinzen, D. J. & Wineland, D. J. Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Phys. Rev. A 42, 2977–2994 (1990)

    Article  ADS  CAS  Google Scholar 

  10. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998)

    Article  CAS  Google Scholar 

  11. Tian, L. & Zoller, P. Coupled ion-nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Hensinger, W. K. et al. Ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A 72, 041405(R) (2005)

    Article  ADS  Google Scholar 

  13. Tian, L., Blatt, R. & Zoller, P. Scalable ion trap quantum computing without moving ions. Eur. Phys. J. D 32, 201–208 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Schmied, R., Roscilde, T., Murg, V., Porras, D. & Cirac, J. I. Quantum phases of trapped ions in an optical lattice. N. J. Phys. 10, 045017 (2008)

    Article  Google Scholar 

  15. Chiaverini, J. & Lybarger, W. E., Jr Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays. Phys. Rev. A 77, 022324 (2008)

    Article  ADS  Google Scholar 

  16. Schmied, R., Wesenberg, J. H. & Leibfried, D. Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102, 233002 (2009)

    Article  ADS  Google Scholar 

  17. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Daniilidis, N., Lee, T., Clark, R., Narayanan, S. & Häffner, H. Wiring up trapped ions to study aspects of quantum information. J. Phys. B 42, 154012 (2009)

    Article  ADS  Google Scholar 

  22. Tan, J. N. Interacting ion oscillators in contiguous confinement wells. Bull. Am. Phys. Soc. 47, 103 (2002)

    Google Scholar 

  23. Ciaramicoli, G., Marzoli, I. & Tombesi, P. Scalable quantum processor with trapped electrons. Phys. Rev. Lett. 91, 017901 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Labaziewicz, J. et al. Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008)

    Article  ADS  Google Scholar 

  27. Epstein, R. J. et al. Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)

    Article  ADS  Google Scholar 

  28. Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Idziaszek, Z., Calarco, T. & Zoller, P. Ion-assisted ground-state cooling of a trapped polar molecule. Preprint at 〈http://arxiv.org/abs/1008.1858〉 (2010)

Download references

Acknowledgements

This work was supported by IARPA, DARPA, ONR and the NIST Quantum Information Program. We thank M. Biercuk, A. VanDevender, J. Amini, and R. B. Blakestad for their help in assembling parts of the experiment, and we thank U. Warring and R. Simmonds for comments. This paper, a submission of NIST, is not subject to US copyright.

Author information

Authors and Affiliations

Authors

Contributions

K.R.B. and C.O. participated in the design of the experiment and built the experimental apparatus. K.R.B. collected data, analysed results and wrote the manuscript. Y.C. fabricated the ion trap chip and collected data. A.C.W. maintained laser systems and collected data. D.L. participated in the design of the experiment, collected data and maintained laser systems. D.J.W. participated in the design and analysis of the experiment. All authors discussed the results and the text of the manuscript.

Corresponding author

Correspondence to K. R. Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K., Ospelkaus, C., Colombe, Y. et al. Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011). https://doi.org/10.1038/nature09721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09721

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing