Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales

Subjects

Abstract

The Milankovitch theory states that global climate variability on orbital timescales from tens to hundreds of thousands of years is dominated by the summer insolation at high northern latitudes1,2. The supporting evidence includes reconstructed air temperatures in Antarctica that are nearly in phase with boreal summer insolation and out of phase with local summer insolation3,4,5. Antarctic climate is therefore thought to be driven by northern summer insolation5. A clear mechanism that links the two hemispheres on orbital timescales is, however, missing. We propose that key Antarctic temperature records derived from ice cores are biased towards austral winter because of a seasonal cycle in snow accumulation. Using present-day estimates of this bias in the ‘recorder’ system, here we show that the local insolation can explain the orbital component of the temperature record without having to invoke a link to the Northern Hemisphere. Therefore, the Antarctic ice-core-derived temperature record, one of the best-dated records of the late Pleistocene temperature evolution, cannot be used to support or contradict the Milankovitch hypothesis that global climate changes are driven by Northern Hemisphere summer insolation variations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship of daily local insolation and surface air temperature.
Figure 2: Seasonal cycle of accumulation and insolation anomaly.
Figure 3: Comparison of the temperature reconstruction with the accumulation-weighted insolation.

Similar content being viewed by others

References

  1. Milankovitch, M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitproblem. Akad. R. Serbe 133, 1–633 (1941)

    Google Scholar 

  2. Imbrie, J. et al. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992)

    Article  ADS  Google Scholar 

  3. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Lorius, C. et al. A 150,000-year climatic record from Antarctic ice. Nature 316, 591–596 (1985)

    Article  ADS  CAS  Google Scholar 

  5. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Suwa, M. & Bender, M. L. Chronology of the Vostok ice core constrained by O2/N2 ratios of occluded air, and its implication for the Vostok climate records. Quat. Sci. Rev. 27, 1093–1106 (2008)

    Article  ADS  Google Scholar 

  8. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. & Le Treut, H. The ice-core record: climate sensitivity and future greenhouse warming. Nature 347, 139–145 (1990)

    Article  ADS  CAS  Google Scholar 

  9. Manabe, S. & Broccoli, A. The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res. 90, 2167–2190 (1985)

    Article  ADS  Google Scholar 

  10. Stocker, T. F. Climate change—the seesaw effect. Science 282, 61–62 (1998)

    Article  CAS  Google Scholar 

  11. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geosci. 1, 787–792 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Stott, L., Timmermann, A. & Thunell, R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science 318, 435–438 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Timmermann, A., Timm, O., Stott, L. & Menviel, L. The roles of CO2 and orbital forcing in driving southern hemispheric temperature variations during the last 21 000 yr. J. Clim. 22, 1626–1640 (2009)

    Article  ADS  Google Scholar 

  14. Joussaume, S. & Braconnot, P. Sensitivity of paleoclimate simulation results to season definitions. J. Geophys. Res. 102, 1943–1956 (1997)

    Article  ADS  Google Scholar 

  15. Steig, E. J., Grootes, P. M. & Stuiver, M. Seasonal precipitation timing and ice core records. Science 266, 1885–1886 (1994)

    Article  ADS  CAS  Google Scholar 

  16. Werner, M., Mikolajewicz, U., Heimann, M. & Hoffmann, G. Borehole versus isotope temperatures on Greenland: seasonality does matter. Geophys. Res. Lett. 27, 723–726 (2000)

    Article  ADS  Google Scholar 

  17. Jouzel, J. et al. Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. J. Geophys. Res. 108, 4361 (2003)

    Article  Google Scholar 

  18. McConnell, J. R., Bales, R. C. & Davis, D. R. Recent intra-annual snow accumulation at South Pole: implications for ice core interpretation. J. Geophys. Res. 102, 21947–21954 (1997)

    Article  ADS  Google Scholar 

  19. Noone, D., Turner, J. & Mulvaney, R. Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. J. Geophys. Res. 104, 19191–19211 (1999)

    Article  ADS  Google Scholar 

  20. Gildor, H. & Ghil, M. Phase relations between climate proxy records: potential effect of seasonal precipitation changes. Geophys. Res. Lett. 29, 1024 (2002)

    Article  ADS  Google Scholar 

  21. Schwerdtfeger, W. Weather and Climate of the Antarctic (Elsevier, 1984)

    Google Scholar 

  22. Keller, L. Antarctic Automatic Weather Station Data for the Calendar Year 2001 (University of Wisconsin, Space Science and Engineering Center, 2007)

    Google Scholar 

  23. Bromwich, D. H. Snowfall in high southern latitudes. Rev. Geophys. 26, 149–168 (1988)

    Article  ADS  Google Scholar 

  24. Ekaykin, A., Petit, J. & Arapov, P. Meteorological regime of central Antarctica and its role in the formation of isotope composition of snow thickness. PhD thesis, Univ. Joseph Fourier. (2003)

  25. Berger, A. & Loutre, M. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991)

    Article  ADS  Google Scholar 

  26. Hansen, J. et al. Climate response times: dependence on climate sensitivity and ocean mixing. Science 229, 857–859 (1985)

    Article  ADS  CAS  Google Scholar 

  27. Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-year centennial-scale marine record of Southern Hemisphere climatic oscillation. Science 301, 948–952 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Laepple, T. & Lohmann, G. The seasonal cycle as template for climate variability on astronomical time scales. Paleoceanography 24, PA4201 (2009)

    Article  ADS  Google Scholar 

  29. King, A. & Howard, W. Seasonality of foraminiferal flux in sediment traps at Chatham Rise, SW Pacific: implications for paleotemperature estimates. Deep-Sea Res. I 48, 1687–1708 (2001)

    Article  Google Scholar 

  30. Schulz, K. G. & Zeebe, R. E. Pleistocene glacial terminations triggered by synchronous changes in Southern and Northern Hemisphere insolation: the insolation canon hypothesis. Earth Planet. Sci. Lett. 249, 326–336 (2006)

    Article  ADS  CAS  Google Scholar 

  31. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010)

    Article  ADS  CAS  Google Scholar 

  32. Lisiecki, L., Raymo, M. & Curry, W. Atlantic overturning responses to Late Pleistocene climate forcings. Nature 456, 85–88 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Fujita for providing the original data of δ18O measurements from precipitation samples and the Arctic and Antarctic Research Institute (AARI) for providing meteorological data sets of Vostok station. The work benefited from discussions with S. Kipfstuhl, O. Eisen and V. Masson-Delmotte, as well as from comments by P. Huybers and K. Kawamura.

Author information

Authors and Affiliations

Authors

Contributions

T.L. designed the study, performed the statistical analysis, and wrote the paper. Both M.W. and G.L. contributed significantly to the discussion of results and manuscript refinement.

Corresponding author

Correspondence to Thomas Laepple.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1-7, Supplementary Tables 1-2, Supplementary Figures 1-17 with legends and additional references. (PDF 19679 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laepple, T., Werner, M. & Lohmann, G. Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales. Nature 471, 91–94 (2011). https://doi.org/10.1038/nature09825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09825

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing