Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum storage of photonic entanglement in a crystal

Abstract

Entanglement is the fundamental characteristic of quantum physics—much experimental effort is devoted to harnessing it between various physical systems. In particular, entanglement between light and material systems is interesting owing to their anticipated respective roles as ‘flying’ and stationary qubits in quantum information technologies (such as quantum repeaters1,2,3 and quantum networks4). Here we report the demonstration of entanglement between a photon at a telecommunication wavelength (1,338 nm) and a single collective atomic excitation stored in a crystal. One photon from an energy–time entangled pair5 is mapped onto the crystal and then released into a well-defined spatial mode after a predetermined storage time. The other (telecommunication wavelength) photon is sent directly through a 50-metre fibre link to an analyser. Successful storage of entanglement in the crystal is proved by a violation of the Clauser–Horne–Shimony–Holt inequality6 by almost three standard deviations (S = 2.64 ± 0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building multiplexed quantum repeaters7 for long-distance quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Non-classical correlations and storage efficiency.
Figure 3: Storage of photonic entanglement in a crystal.

Similar content being viewed by others

References

  1. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Preprint at 〈http://arxiv.org/abs/0906.2699〉 (2009)

  4. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989)

    Article  ADS  CAS  Google Scholar 

  6. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  7. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  8. Blinov, B. B., Moehring, D., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped ion and a single photon. Nature 428, 153–157 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  10. Matsukevich, D. N. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005)

    Article  ADS  CAS  Google Scholar 

  11. de Riedmatten, H. et al. Direct measurement of decoherence for entanglement between a photon and stored atomic excitation. Phys. Rev. Lett. 97, 113603 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Chen, S. et al. Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99, 180505 (2007)

    Article  ADS  Google Scholar 

  13. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Akiba, K., Kashiwagi, K., Arikawa, M. & Kozuma, M. Storage and retrieval of nonclassical photon pairs and conditional single photons generated by the parametric down-conversion process. N. J. Phys. 11, 013049 (2009)

    Article  Google Scholar 

  15. Jin, X.-M. et al. Quantum interface between frequency-uncorrelated down-converted entanglement and atomic-ensemble quantum memory. Preprint at 〈http://arxiv.org/abs/1004.4691〉 (2010)

  16. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Tittel, W. et al. Photon-echo quantum memory in solid state systems. Laser Photon. Rev. 4, 244–267 (2010)

    Article  ADS  CAS  Google Scholar 

  18. Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010)

    Article  ADS  CAS  Google Scholar 

  20. de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light-matter interface at the single-photon level. Nature 456, 773–777 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Chanelière, T., Ruggiero, J., Bonarota, M., Afzelius, M. & Gouët, J.-L. L. Efficient light storage in a crystal using an atomic frequency comb. N. J. Phys. 12, 023025 (2010)

    Article  Google Scholar 

  22. Sabooni, M. et al. Storage and recall of weak coherent optical pulses with an efficiency of 25%. Phys. Rev. Lett. 105, 060501 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Usmani, I., Afzelius, M., de Riedmatten, H. & Gisin, N. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nature Commun. 1, 12 (2010)

    Article  ADS  Google Scholar 

  24. Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009)

    Article  ADS  Google Scholar 

  25. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Afzelius, M. et al. Demonstration of atomic frequency comb memory for light with spin-wave storage. Phys. Rev. Lett. 104, 040503 (2010)

    Article  ADS  Google Scholar 

  27. Afzelius, M. & Simon, C. Impedance-matched cavity quantum memory. Phys. Rev. A 82, 022310 (2010)

    Article  ADS  Google Scholar 

  28. Moiseev, S. A., Andrianov, S. N. & Gubaidullin, F. F. Efficient multimode quantum memory based on photon echo in an optimal QED cavity. Phys. Rev. A 82, 022311 (2010)

    Article  ADS  Google Scholar 

  29. Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 10.1038/nature09719 (this issue)

Download references

Acknowledgements

We thank R. Locher for help during the early stages of the experiment. We are grateful to A. Beveratos and W. Tittel for lending us avalanche photodiodes. This work was supported by the Swiss NCCR Quantum Photonics, the Science and Technology Cooperation Program Switzerland–Russia, as well as by the European projects QuRep and ERC-Qore. F.B. was supported in part by FQRNT.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Mikael Afzelius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary Figures 1-3 with legends and additional references. (PDF 249 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clausen, C., Usmani, I., Bussières, F. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011). https://doi.org/10.1038/nature09662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09662

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing