Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of human O-GlcNAc transferase and its complex with a peptide substrate

Abstract

The essential mammalian enzyme O-linked β-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor1. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins2,3, including numerous transcription factors4, tumour suppressors, kinases5, phosphatases1 and histone-modifying proteins6. Aberrant glycosylation by OGT has been linked to insulin resistance7, diabetic complications8, cancer9 and neurodegenerative diseases including Alzheimer’s10. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 Å resolution) and as a ternary complex with UDP and a peptide substrate (1.95 Å). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT’s functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of human OGT complexed to UDP.
Figure 2: Structure of the OGT–UDP–peptide complex.
Figure 3: Structure of the intervening domain and full-length models of human OGT.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The structures of the OGT–UDP complex and the OGT–UDP–peptide complex have been submitted to the Protein Data Bank under accession numbers 3PE3 and 3PE4. Atomic coordinates for the full-length models of OGT as well as the docked UDP-GlcNAc structure are available for download from the Walker Laboratory website (see Supplementary Information).

References

  1. Hart, G. W., Housley, M. P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Torres, C. R. & Hart, G. W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984)

    CAS  PubMed  Google Scholar 

  3. Haltiwanger, R. S., Holt, G. D. & Hart, G. W. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J. Biol. Chem. 265, 2563–2568 (1990)

    CAS  PubMed  Google Scholar 

  4. Yang, X., Zhang, F. & Kudlow, J. E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69–80 (2002)

    Article  CAS  Google Scholar 

  5. Dias, W. B., Cheung, W. D., Wang, Z. & Hart, G. W. Regulation of calcium/calmodulin-dependent kinase IV by O-GlcNAc modification. J. Biol. Chem. 284, 21327–21337 (2009)

    Article  CAS  Google Scholar 

  6. Fujiki, R. et al. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 459, 455–459 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Caldwell, S. A. et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29, 2831–2842 (2010)

    Article  CAS  Google Scholar 

  10. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W. & Gong, C. X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 10804–10809 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl Acad. Sci. USA 97, 5735–5739 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Love, D. C. & Hanover, J. A. The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Sci. STKE 2005, re13 (2005)

    PubMed  Google Scholar 

  13. Dentin, R., Hedrick, S., Xie, J., Yates, J., III & Montminy, M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319, 1402–1405 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Gambetta, M. C., Oktaba, K. & Muller, J. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325, 93–96 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Sinclair, D. A. et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl Acad. Sci. USA 106, 13427–13432 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Love, D. C. et al. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc. Natl Acad. Sci. USA 107, 7413–7418 (2010)

    Article  ADS  CAS  Google Scholar 

  18. Goldberg, H. J., Whiteside, C. I., Hart, G. W. & Fantus, I. G. Posttranslational, reversible O-glycosylation is stimulated by high glucose and mediates plasminogen activator inhibitor-1 gene expression and Sp1 transcriptional activity in glomerular mesangial cells. Endocrinology 147, 222–231 (2006)

    Article  CAS  Google Scholar 

  19. Kreppel, L. K., Blomberg, M. A. & Hart, G. W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997)

    Article  CAS  Google Scholar 

  20. Lubas, W. A., Frank, D. W., Krause, M. & Hanover, J. A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316–9324 (1997)

    Article  CAS  Google Scholar 

  21. Jinek, M. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α. Nature Struct. Mol. Biol. 11, 1001–1007 (2004)

    Article  CAS  Google Scholar 

  22. Ha, S., Walker, D., Shi, Y. & Walker, S. The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9, 1045–1052 (2000)

    Article  CAS  Google Scholar 

  23. Hu, Y. et al. Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc. Natl Acad. Sci. USA 100, 845–849 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Wrabl, J. O. & Grishin, N. V. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J. Mol. Biol. 314, 365–374 (2001)

    Article  CAS  Google Scholar 

  25. Martinez-Fleites, C. et al. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nature Struct. Mol. Biol. 15, 764–765 (2008)

    Article  CAS  Google Scholar 

  26. Clarke, A. J. et al. Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J. 27, 2780–2788 (2008)

    Article  CAS  Google Scholar 

  27. Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008)

    Article  CAS  Google Scholar 

  28. Kreppel, L. K. & Hart, G. W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015–32022 (1999)

    Article  CAS  Google Scholar 

  29. Gross, B. J., Kraybill, B. C. & Walker, S. Discovery of O-GlcNAc transferase inhibitors. J. Am. Chem. Soc. 127, 14588–14589 (2005)

    Article  CAS  Google Scholar 

  30. Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proc. ACM/IEEE Conf. on Supercomputing (SC06) (ACM Press, 2006)

    Google Scholar 

  31. Boggon, T. J. & Shapiro, L. Screening for phasing atoms in protein crystallography. Structure 8, R143–R149 (2000)

    Article  CAS  Google Scholar 

  32. Leslie, A. G. W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsl. Protein Crystallogr. 26, 27–33 (1992)

    Google Scholar 

  33. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  Google Scholar 

  34. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  35. Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Crystallogr. 37, 843–844 (2004)

    Article  CAS  Google Scholar 

  36. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  37. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  38. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  40. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  Google Scholar 

  41. Painter, J. & Merritt, E. A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111 (2006)

    Article  CAS  Google Scholar 

  42. Painter, J. & Merritt, E. A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D 62, 439–450 (2006)

    Article  Google Scholar 

  43. DeLano, W. L. The Pymol Molecular Graphics System. (Delano Scientific, San Carlos, CA, 2002)

  44. Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D 60, 2288–2294 (2004)

    Article  Google Scholar 

  45. McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D 63, 32–41 (2007)

    Article  CAS  Google Scholar 

  46. Mackerell, A. D., Jr, Feig, M. & Brooks, C. L., III Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004)

    Article  CAS  Google Scholar 

  47. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. & Hermans, J. in Intermolecular Forces (ed. Pullman, B.) 331–342 (Reidel, 1981)

    Book  Google Scholar 

  48. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–28. 33–38 (1996)

Download references

Acknowledgements

We thank B. Gross and C. Drennan for advice. We also thank the US National Institutes of Health, the US National Science Foundation, and the Harvard Biomedical Accelerator Fund for financial support. This work is based on research conducted at the Advanced Photon Source (Northeastern Collaborative Access Team beamlines) and Brookhaven National Laboratory (X25 and X29 beamlines).

Author information

Authors and Affiliations

Authors

Contributions

S.W. conceived the project. M.B.L. obtained the crystallization construct and initial diffracting crystals. M.B.L., Y.N. and P.S. determined and refined the crystal structures. J.J. and M.B.L. performed the enzymatic assays. M.B.L., Y.N., J.J., P.S. and S.W. designed experiments, discussed results, and prepared the manuscript.

Corresponding authors

Correspondence to Piotr Sliz or Suzanne Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-9 with legends, Supplementary Tables 1-6 and Supplementary References. (PDF 1198 kb)

Supplementary Movie 1

This movie shows the molecular dynamics simulations of OGT. It is based on a 1 microsecond simulation and shows the global movement of the TPRs based on motion of the hinge described in Supplementary Figure 3. (MOV 3056 kb)

Supplementary Model 1

PDB coordinates for the model of ncOGT bound to UDP. As described in the caption of Fig. 3c, this full-length model was prepared by combining our OGT-UDP structure (PDB code 3PE3) with the OGT TPR structure (PDB code 1W3B). (TXT 1016 kb)

Supplementary Model 2

PDB coordinates for the model of ncOGT bound to UDP and the CKII peptide. Model of the full length OGT-UDP-peptide structure assembled from our complex structure (PDB code 3PE4) and the OGT TPR structure (PDB code 1W3B). (TXT 1035 kb)

Supplementary Model 3

PDB coordinates for the model of UDP-GlcNAc docked into hOGT4.5. UDP-GlcNAc was docked into the OGT-UDP structure (see Supplementary Fig. 5). (TXT 884 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarus, M., Nam, Y., Jiang, J. et al. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011). https://doi.org/10.1038/nature09638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09638

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing