Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structural basis for agonist and partial agonist action on a β1-adrenergic receptor

Abstract

β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline1,2. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β1-adrenergic receptor (β1AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser5.42 and Ser5.46), but partial agonists only interact with Ser5.42 (superscripts refer to Ballesteros–Weinstein numbering3). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the β 1 -adrenergic receptor bound to agonists.
Figure 2: Polar and non-polar interactions involved in agonist binding to β 1 -adrenergic receptor.
Figure 3: Comparison of the ligand-binding pockets of the β 1 and β 2 adrenergic receptors.
Figure 4: Differences in the ligand-binding pocket between antagonist- and agonist-bound β 1 -adrenergic receptor.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been submitted to the Protein Data Bank under accession codes 2y00, 2y01, 2y02, 2y03 and 2y04 for β44-m23 bound either to dobutamine (dob92 and dob102), carmoterol, isoprenaline or salbutamol, respectively.

References

  1. Evans, B. A. et al. Ligand-directed signalling at β-adrenoceptors. Br. J. Pharmacol. 159, 1022–1038 (2010)

    Article  CAS  Google Scholar 

  2. Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995)

    Article  CAS  Google Scholar 

  4. Strader, C. D. et al. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J. Biol. Chem. 263, 10267–10271 (1988)

    CAS  PubMed  Google Scholar 

  5. Sato, T., Kobayashi, H., Nagao, T. & Kurose, H. Ser203 as well as Ser204 and Ser207 in fifth transmembrane domain of the human β2-adrenoceptor contributes to agonist binding and receptor activation. Br. J. Pharmacol. 128, 272–274 (1999)

    Article  CAS  Google Scholar 

  6. Liapakis, G. et al. The forgotten serine. A critical role for Ser-2035.42 in ligand binding to and activation of the β2-adrenergic receptor. J. Biol. Chem. 275, 37779–37788 (2000)

    Article  CAS  Google Scholar 

  7. Strader, C. D. et al. Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J. Biol. Chem. 264, 13572–13578 (1989)

    CAS  PubMed  Google Scholar 

  8. Wieland, K. et al. Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor. Proc. Natl Acad. Sci. USA 93, 9276–9281 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Suryanarayana, S. & Kobilka, B. K. Amino acid substitutions at position 312 in the seventh hydrophobic segment of the beta 2-adrenergic receptor modify ligand-binding specificity. Mol. Pharmacol. 44, 111–114 (1993)

    CAS  PubMed  Google Scholar 

  10. Kikkawa, H., Isogaya, M., Nagao, T. & Kurose, H. The role of the seventh transmembrane region in high affinity binding of a β2-selective agonist TA-2005. Mol. Pharmacol. 53, 128–134 (1998)

    Article  CAS  Google Scholar 

  11. Isogaya, M. et al. Identification of a key amino acid of the β2-adrenergic receptor for high affinity binding of salmeterol. Mol. Pharmacol. 54, 616–622 (1998)

    CAS  PubMed  Google Scholar 

  12. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Hanson, M. A. et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16, 897–905 (2008)

    Article  CAS  Google Scholar 

  15. Wacker, D. et al. Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J. Am. Chem. Soc. 132, 11443–11445 (2010)

    Article  CAS  Google Scholar 

  16. Tate, C. G. & Schertler, G. F. Engineering G protein-coupled receptors to facilitate their structure determination. Curr. Opin. Struct. Biol. 19, 386–395 (2009)

    Article  CAS  Google Scholar 

  17. Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007)

    Article  CAS  Google Scholar 

  18. Park, J. H. et al. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Engelhardt, S., Grimmer, Y., Fan, G. H. & Lohse, M. J. Constitutive activity of the human β1-adrenergic receptor in β1-receptor transgenic mice. Mol. Pharmacol. 60, 712–717 (2001)

    CAS  PubMed  Google Scholar 

  21. Green, S. A., Rathz, D. A., Schuster, A. J. & Liggett, S. B. The Ile164 β2-adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to Gs . Eur. J. Pharmacol. 411, 141–147 (2001)

    Article  Google Scholar 

  22. Piscione, F. et al. Effects of Ile164 polymorphism of beta2-adrenergic receptor gene on coronary artery disease. J. Am. Coll. Cardiol. 52, 1381–1388 (2008)

    Article  CAS  Google Scholar 

  23. Serrano-Vega, M. J. & Tate, C. G. Transferability of thermostabilizing mutations between β-adrenergic receptors. Mol. Membr. Biol. 26, 385–396 (2009)

    Article  CAS  Google Scholar 

  24. Serrano-Vega, M. J., Magnani, F., Shibata, Y. & Tate, C. G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl Acad. Sci. USA 105, 877–882 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Balaraman, G. S., Bhattacharya, S. & Nagarajan, V. Structural insights into conformational stability of wild-type and mutant β1-adrenergic receptor. Biophys. J. 99, 568–577 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Altenbach, C. et al. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl Acad. Sci. USA 105, 7439–7444 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Williams, R. S. & Bishop, T. Selectivity of dobutamine for adrenergic receptor subtypes: in vitro analysis by radioligand binding. J. Clin. Invest. 67, 1703–1711 (1981)

    Article  CAS  Google Scholar 

  29. Katritch, V. et al. Analysis of full and partial agonists binding to β2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J. Mol. Recognit. 22, 307–318 (2009)

    Article  CAS  Google Scholar 

  30. Warne, T., Serrano-Vega, M. J., Tate, C. G. & Schertler, G. F. Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Protein Expr. Purif. 65, 204–213 (2009)

    Article  CAS  Google Scholar 

  31. Leslie, A. G. W. The integration of macromolecular diffraction data. Acta Crystallogr. D 62, 48–57 (2006)

    Article  Google Scholar 

  32. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  Google Scholar 

  33. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  34. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  35. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot . Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  Google Scholar 

  36. Schüttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004)

    Article  Google Scholar 

  37. McDonald, I. K. & Thornton, J. M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994)

    Article  CAS  Google Scholar 

  38. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  39. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    Article  ADS  Google Scholar 

  40. Baker, J. G., Hall, I. P. & Hill, S. J. Agonist actions of “β-blockers” provide evidence for two agonist activation sites or conformations of the human β1-adrenoceptor. Mol. Pharmacol. 63, 1312–1321 (2003)

    Article  CAS  Google Scholar 

  41. Warne, T., Chirnside, J. & Schertler, G. F. Expression and purification of truncated, non-glycosylated turkey beta-adrenergic receptors for crystallization. Biochim. Biophys. Acta 1610, 133–140 (2003)

    Article  CAS  Google Scholar 

  42. Cheng, Y.-C. & Prusoff, W. H. Relationship between the inhibition constant (K I ) and the concentration of inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by core funding from the MRC and the BBSRC grant (BB/G003653/1). Financial support for G.F.X.S was also from a Human Frontier Science Project (HFSP) programme grant (RG/0052), a European Commission FP6 specific targeted research project (LSH-2003-1.1.0-1) and an ESRF long-term proposal. J.G.B. was funded by a Wellcome Trust Clinician Scientist Fellowship. We are grateful to P. Coli and A. Rizzi for the supply of (R,R)-carmoterol. F. Gorrec is thanked for his help with crystallisation robotics. We would also like to thank beamline staff at the European Synchrotron Radiation Facility, particularly D. Flot and A. Popov at ID23-2 and F. Marshall, M. Weir, M. Congreve and R. Henderson for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.W. devised and performed receptor expression, purification, crystallization, cryo-cooling of the crystals, data collection and initial data processing. P.C.E. helped with crystal cryo-cooling and data collection. J.G.B. performed the pharmacological analyses on receptor mutants in whole cells and R.N. performed the ligand binding studies on baculovirus-expressed receptors. R.M. and A.G.W.L. were involved in data processing and structure refinement. Manuscript preparation was performed by T.W., C.G.T., A.G.W.L. and G.F.X.S. The overall project management was by G.F.X.S. and C.G.T.

Corresponding authors

Correspondence to Gebhard F. X. Schertler or Christopher G. Tate.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-8 with legends and Supplementary Tables 1-8. (PDF 3137 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warne, T., Moukhametzianov, R., Baker, J. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011). https://doi.org/10.1038/nature09746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09746

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing