Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis

Abstract

With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization1 and shows remarkable efficacy in cancer chemotherapy2. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia)3 is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene4, which is catalysed by taxadiene synthase5. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids6. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82 Å resolution) and 2-fluorogeranylgeranyl diphosphate (2.25 Å resolution). The TXS structure reveals a modular assembly of three α-helical domains. The carboxy-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third ‘insertion’ domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed catalytic mechanism of taxadiene synthase.
Figure 2: Structural relationships among terpenoid cyclases.
Figure 3: Binding of substrate analogue to TXS.
Figure 4: Active-site cavities of terpenoid synthases.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors of the TXS–ACP and TXS–FGP complexes are deposited in the Protein Data Bank with accession codes 3P5P and 3P5R, respectively.

References

  1. Schiff, P. B., Fant, J. & Horwitz, S. B. Promotion of microtubule assembly in vitro by taxol. Nature 277, 665–667 (1979)

    Article  ADS  CAS  Google Scholar 

  2. Arbuck, S. G. & Blaylock, B. A. in Taxol: Science and Applications (ed. Suffness, M.) 379–415 (CRC Press, 1995)

    Google Scholar 

  3. Wani, M. C., Taylor, H. L., Wall, M., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. The isolation and structure of Taxol, a novel antileukemic and antitumor agent from Taxus brevifolia . J. Am. Chem. Soc. 93, 2325–2327 (1971)

    Article  CAS  Google Scholar 

  4. Koepp, A. E. et al. Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of Taxol biosynthesis in Pacific yew. J. Biol. Chem. 270, 8686–8690 (1995)

    Article  CAS  Google Scholar 

  5. Hezari, M., Lewis, N. G. & Croteau, R. Purification and characterization of taxa-4(5),11(12)-diene synthase from Pacific yew (Taxus brevifolia) that catalyzes the first committed step of Taxol biosynthesis. Arch. Biochem. Biophys. 322, 437–444 (1995)

    Article  CAS  Google Scholar 

  6. Wildung, M. R. & Croteau, R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of Taxol biosynthesis. J. Biol. Chem. 271, 9201–9204 (1996)

    Article  CAS  Google Scholar 

  7. Whittington, D. A. et al. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl Acad. Sci. USA 99, 15375–15380 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Lesburg, C. A., Zhai, G., Cane, D. E. & Christianson, D. W. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820–1824 (1997)

    Article  CAS  Google Scholar 

  9. Starks, C. M., Back, K., Chappell, J. & Noel, J. P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815–1820 (1997)

    Article  CAS  Google Scholar 

  10. Wendt, K. U., Poralla, K. & Schulz, G. E. Structure and function of a squalene cyclase. Science 277, 1811–1815 (1997)

    Article  CAS  Google Scholar 

  11. Trapp, S. C. & Croteau, R. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158, 811–832 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Keeling, C. I. et al. Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms. Plant Physiol. 152, 1197–1208 (2010)

    Article  CAS  Google Scholar 

  13. Cao, R. et al. Diterpene cyclases and the nature of the isoprene fold. Proteins Struct. Funct. Bioinf. 78, 2417–2432 (2010)

    Article  CAS  Google Scholar 

  14. Wendt, K. U. & Schulz, G. E. Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure 6, 127–133 (1998)

    Article  CAS  Google Scholar 

  15. Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006)

    Article  CAS  Google Scholar 

  16. Christianson, D. W. Unearthing the roots of the terpenome. Curr. Opin. Chem. Biol. 12, 141–150 (2008)

    Article  CAS  Google Scholar 

  17. Wendt, K. U., Schulz, G. E., Corey, E. J. & Liu, D. R. Enzyme mechanisms for polycyclic triterpene formation. Angew. Chem. Int. Ed. 39, 2812–2833 (2000)

    Article  CAS  Google Scholar 

  18. Lin, X., Hezari, M., Koepp, A. E., Floss, H. G. & Croteau, R. Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of Taxol biosynthesis in Pacific yew. Biochemistry 35, 2968–2977 (1996)

    Article  CAS  Google Scholar 

  19. Williams, D. C. et al. Heterologous expression and characterization of a ‘pseudomature’ form of taxadiene synthase involved in paclitaxel (Taxol) biosynthesis and evaluation of a potential intermediate and inhibitors of the multistep diterpene cyclization reaction. Arch. Biochem. Biophys. 379, 137–146 (2000)

    Article  CAS  Google Scholar 

  20. Williams, D. C. et al. Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chem. Biol. 7, 969–977 (2000)

    Article  CAS  Google Scholar 

  21. Jin, Q., Williams, D. C., Hezari, M., Croteau, R. & Coates, R. M. Stereochemistry of the macrocyclization and elimination steps in taxadiene biosynthesis through deuterium labelling. J. Org. Chem. 70, 4667–4675 (2005)

    Article  CAS  Google Scholar 

  22. Jin, Y., Williams, D. C., Croteau, R. & Coates, R. M. Taxadiene synthase-catalyzed cyclization of 6-fluorogeranylgeranyl diphosphate to 7-fluoroverticillenes. J. Am. Chem. Soc. 127, 7834–7842 (2005)

    Article  CAS  Google Scholar 

  23. Tarshis, L. C., Yan, M., Poulter, C. D. & Sacchettini, J. C. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-Å resolution. Biochemistry 33, 10871–10877 (1994)

    Article  CAS  Google Scholar 

  24. Chang, T. H., Guo, R. T., Ko, T. P., Wang, A. H. J. & Liang, P. H. Crystal structure of type-III geranylgeranyl pyrophosphate synthase from Saccharomyces cerevisiae and the mechanism of product chain length determination. J. Biol. Chem. 281, 14991–15000 (2006)

    Article  CAS  Google Scholar 

  25. Bohlmann, J., Meyer-Gauen, G. & Croteau, R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl Acad. Sci. USA 95, 4126–4133 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Thoma, R. et al. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature 432, 118–122 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Rynkiewicz, M. J., Cane, D. E. & Christianson, D. W. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc. Natl Acad. Sci. USA 98, 13543–13548 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Köksal, M., Zimmer, I., Schnitzler, J.-P. & Christianson, D. W. Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J. Mol. Biol. 402, 363–373 (2010)

    Article  Google Scholar 

  29. Peters, R. J., Ravn, M. M., Coates, R. M. & Croteau, R. Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. J. Am. Chem. Soc. 123, 8974–8978 (2001)

    Article  CAS  Google Scholar 

  30. Prisic, S. & Peters, R. J. Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiol. 144, 445–454 (2007)

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  32. Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Cryst. 37, 843–844 (2004)

    Article  CAS  Google Scholar 

  33. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010)

    Google Scholar 

  34. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D66, 486–501 (2010)

    Google Scholar 

  35. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK—a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  36. Brünger, A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998)

    Google Scholar 

  37. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  38. MacKerell, A. D., Jr et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  Google Scholar 

  39. Kleywegt, G. J. & Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D50, 178–185 (1994)

    CAS  Google Scholar 

  40. Gao, Q. & Chen, S. H. An unprecedented side chain conformation of paclitaxel (Taxol®): crystal structure of 7-mesylpaclitaxel. Tetrahedr. Lett. 37, 3425–3428 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. MacDermaid and J. Saven for advice and assistance with molecular modelling calculations, and E. Oldfield for helpful comments on the manuscript. We thank the National Synchrotron Light Source at Brookhaven National Laboratory for beamline access. The US National Institutes of Health provided grants GM56838 (D.W.C.), GM13956 (R.M.C.) and CA55254 (R.C.) in support of this research. Y.J. thanks the University of Illinois for support through the John C. Bailar and R. C. Fuson Fellowships.

Author information

Authors and Affiliations

Authors

Contributions

M.K. and D.W.C. performed the X-ray crystallographic studies. R.C. supplied the M79-TXS construct from which M107-TXS-CHT was ultimately prepared. Y.J. and R.M.C. synthesized 2-fluorogeranylgeranyl diphosphate. All authors contributed to the interpretation of the results and preparation of the manuscript.

Corresponding author

Correspondence to David W. Christianson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, additional references, Supplementary Tables 1-2 and Supplementary Figures 1-4 with legends. (PDF 4513 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köksal, M., Jin, Y., Coates, R. et al. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 469, 116–120 (2011). https://doi.org/10.1038/nature09628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09628

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing