Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entanglement of spin waves among four quantum memories

Abstract

Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities1. For example, a quantum network can serve as a ‘web’ for connecting quantum processors for computation2,3 and communication4, or as a ‘simulator’ allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels5,6. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems7,8,9,10,11,12, entangled states have not been achieved for interconnects capable of ‘mapping’ multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations13,14,15,16. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium17,18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the experiment.
Figure 2: Quadripartite entanglement among four atomic ensembles.
Figure 3: Dissipative dynamics of atomic entanglement.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  CAS  ADS  Google Scholar 

  2. Preskill, J. Quantum computation. Phys. 219 Course Inf.http://www.theory.caltech.edu/people/preskill/ph219/#lecture〉 (1997)

  3. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  4. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  CAS  ADS  Google Scholar 

  5. Lloyd, S. Universal quantum simulator. Science 273, 1073–1078 (1996)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  6. Acín, A., Cirac, J. I. & Lewenstein, M. Entanglement percolation in quantum networks. Nature Phys. 3, 256–259 (2007)

    Article  ADS  Google Scholar 

  7. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005)

    Article  CAS  ADS  Google Scholar 

  8. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)

    Article  CAS  ADS  Google Scholar 

  9. Simon, J., Tanji, H., Ghosh, S. & Vuletic´, V. Single-photon bus connecting spin-wave quantum memories. Nature Phys. 3, 765–769 (2007)

    Article  CAS  ADS  Google Scholar 

  10. Weber, B. et al. Photon-photon entanglement with a single trapped atom. Phys. Rev. Lett. 102, 030501 (2009)

    Article  CAS  ADS  Google Scholar 

  11. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008)

    Article  CAS  ADS  Google Scholar 

  12. Jost, J. D. et al. Entangled mechanical oscillators. Nature 459, 683–685 (2009)

    Article  CAS  ADS  Google Scholar 

  13. Sørensen, A. & Mølmer, K. Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001)

    Article  ADS  Google Scholar 

  14. Hofmann, H. F. & Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. Papp, S. B. et al. Characterization of multipartite entanglement for one photon shared among four optical modes. Science 324, 764–768 (2009)

    Article  CAS  ADS  Google Scholar 

  16. Lougovski, P. et al. Verifying multipartite mode entanglement of W states. N. J. Phys. 11, 063029 (2009)

    Article  Google Scholar 

  17. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  18. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  20. DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009)

    Article  CAS  ADS  Google Scholar 

  21. van Enk, S. J., Lütkenhaus, N. & Kimble, H. J. Experimental procedures for entanglement verification. Phys. Rev. A 75, 052318 (2007)

    Article  ADS  Google Scholar 

  22. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  23. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005)

    Article  CAS  ADS  Google Scholar 

  24. Haffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)

    Article  CAS  ADS  Google Scholar 

  25. Aoki, T. et al. Experimental creation of a fully inseparable tripartite continuous-variable state. Phys. Rev. Lett. 91, 080404 (2003)

    Article  ADS  Google Scholar 

  26. Su, X. et al. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  27. Gao, W.-B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010)

    Article  CAS  ADS  Google Scholar 

  28. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009)

    Article  CAS  ADS  Google Scholar 

  29. Simon, J. & Tanji, H. Thompson, J. K. & Vuletic´, V. Interfacing collective atomic excitations and single photons. Phys. Rev. Lett. 98, 183601 (2007)

    Article  ADS  Google Scholar 

  30. Heaney, L., Cabello, A., Santos, M. F. & Vedral, V. Extreme nonlocality with one photon. Preprint at 〈http://arxiv.org/abs/0911.0770v2〉 (2010)

  31. Balic´, V., Braje, D. A., Kolchin, P., Yin, G. Y. & Harris, S. E. Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005)

    Article  ADS  Google Scholar 

  32. Eisert, J., Simon, C. & Plenio, M. B. On the quantification of entanglement in infinite-dimensional quantum systems. J. Phys. A 35, 3911–3923 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007)

    Article  CAS  ADS  Google Scholar 

  34. Laurat, J. et al. Towards experimental entanglement connection with atomic ensembles in the single excitation regime. N. J. Phys. 9, 207–220 (2007)

    Article  Google Scholar 

  35. Hammerer, K., Sorensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010)

    Article  CAS  ADS  Google Scholar 

  36. Zhao, R. et al. Long-lived quantum memory. Nature Phys. 5, 100–104 (2009)

    Article  CAS  ADS  Google Scholar 

  37. Zhao, B. et al. A millisecond quantum memory for scalable quantum networks. Nature Phys. 5, 95–99 (2009)

    Article  CAS  ADS  Google Scholar 

  38. Schnorrberger, U. et al. Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003 (2009)

    Article  CAS  ADS  Google Scholar 

  39. Zhang, R., Garner, S. R. & Hau, L. V. Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates. Phys. Rev. Lett. 103, 233602 (2009)

    Article  ADS  Google Scholar 

  40. Colombe, Y. et al. Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    Article  CAS  ADS  Google Scholar 

  41. Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010)

    Article  CAS  ADS  Google Scholar 

  42. Deutsch, C. et al. Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010)

    Article  CAS  ADS  Google Scholar 

  43. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Preprint at 〈http://arxiv.org/abs/0906.2699v2〉 (2009)

  44. Ivanovic, I. D. How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257–259 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  45. Dieks, D. Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303–306 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  46. Peres, A. How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  47. Chefles, A. Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339–347 (1998)

    Article  CAS  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with K. Hammerer, P. Zoller and J. Ye. This research is supported by the National Science Foundation, the DOD NSSEFF program, the Northrop Grumman Corporation and the Intelligence Advanced Research Projects Activity. A.G. acknowledges support by the Nakajima Foundation. S.B.P. acknowledges support received as a fellow of the Center for Physics of Information at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the research presented in this paper.

Corresponding author

Correspondence to H. J. Kimble.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text I-VII, Supplementary Figures 1-7 with legends and additional references. (PDF 2292 kb)

Supplementary Movie 1

This movie shows the 3D rendering of the entanglement parameters for the dissipative dynamics of atomic entanglement. (MOV 9941 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, K., Goban, A., Papp, S. et al. Entanglement of spin waves among four quantum memories. Nature 468, 412–416 (2010). https://doi.org/10.1038/nature09568

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09568

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing