Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of synaptic connectivity by glia

Abstract

The human brain contains more than 100 trillion (1014) synaptic connections, which form all of its neural circuits. Neuroscientists have long been interested in how this complex synaptic web is weaved during development and remodelled during learning and disease. Recent studies have uncovered that glial cells are important regulators of synaptic connectivity. These cells are far more active than was previously thought and are powerful controllers of synapse formation, function, plasticity and elimination, both in health and disease. Understanding how signalling between glia and neurons regulates synaptic development will offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The tripartite synapse.
Figure 2: Glial regulation of synaptic development.
Figure 3: Molecular pathways known to regulate axon pruning and synapse elimination by glia in invertebrates.
Figure 4: Regulation of synapse elimination in the mammalian CNS by the complement cascade.

Similar content being viewed by others

References

  1. Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    CAS  PubMed  Google Scholar 

  2. Chittajallu, R., Aguirre, A. & Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol. (Lond.) 561, 109–122 (2004).

    CAS  Google Scholar 

  3. Lin, S. C. & Bergles, D. E. Physiological characteristics of NG2-expressing glial cells. J. Neurocytol. 31, 537–549 (2002).

    CAS  PubMed  Google Scholar 

  4. Eroglu, C., Barres, B. A. & Stevens, B. in Structural and Functional Organization of the Synapse (eds Hell, J. W. & Ehlers, M. D.) 683–714 (Springer, 2008).

    Google Scholar 

  5. Feng, Z. & Ko, C. P. Neuronal glia interactions at the vertebrate neuromuscular junction. Curr. Opin. Pharmacol. 7, 316–324 (2007).

    CAS  PubMed  Google Scholar 

  6. Bolton, M. M. & Eroglu, C. Look who is weaving the neural web: glial control of synapse formation. Curr. Opin. Neurobiol. 19, 491–497 (2009).

    PubMed  Google Scholar 

  7. Reichenbach, A., Derouiche, A. & Kirchhoff, F. Morphology and dynamics of perisynaptic glia. Brain Res. Rev. 63, 11–25 (2010).

    PubMed  Google Scholar 

  8. Doherty, J., Logan, M. A., Tasdemir, O. E. & Freeman, M. R. Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29, 4768–4781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dani, J. W., Chernjavsky, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429–440 (1992).

    CAS  PubMed  Google Scholar 

  10. Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo . Nature Neurosci. 9, 816–823 (2006). This paper shows that the stimulation of whiskers increases the cytosolic Ca2+ concentration in astrocytes in the barrel cortex of adult mice. This is the first in vivo evidence that astrocytes respond to a presynaptic spillover of glutamate by increasing their cytosolic Ca2+ concentrations.

    CAS  PubMed  Google Scholar 

  11. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999).

    CAS  PubMed  Google Scholar 

  12. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000). This is the first report of glutamate-mediated synaptic contacts and fast synaptic transmission between pyramidal neurons and OPCs in the mammalian hippocampus.

    ADS  CAS  PubMed  Google Scholar 

  13. Lin, S. C. et al. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46, 773–785 (2005).

    CAS  PubMed  Google Scholar 

  14. De Biase, L. M., Nishiyama, A. & Bergles, D. E. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci. 30, 3600–3611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, S. C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neurosci. 7, 24–32 (2004).

    CAS  PubMed  Google Scholar 

  16. Zhang, Y. & Barres, B. A. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20, 588–594 (2010).

    CAS  PubMed  Google Scholar 

  17. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Halassa, M. M., Fellin, T., Takano, H., Dong, J. H. & Haydon, P. G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grosche, J. et al. Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nature Neurosci. 2, 139–143 (1999).

    CAS  PubMed  Google Scholar 

  22. Witcher, M. R., Kirov, S. A. & Harris, K. M. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55, 13–23 (2007).

    PubMed  Google Scholar 

  23. Genoud, C. et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4, e343 (2006).

    PubMed  PubMed Central  Google Scholar 

  24. Hirrlinger, J., Hulsmann, S. & Kirchhoff, F. Astroglial processes show spontaneous motility at active synaptic terminals in situ . Eur. J. Neurosci. 20, 2235–2239 (2004).

    PubMed  Google Scholar 

  25. Theodosis, D. T. et al. Oxytocin and estrogen promote rapid formation of functional GABA synapses in the adult supraoptic nucleus. Mol. Cell. Neurosci. 31, 785–794 (2006).

    CAS  PubMed  Google Scholar 

  26. Iino, M. et al. Glia–synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292, 926–929 (2001). This paper shows that Ca2+-permeable AMPA receptors on glia are required for proper structural and functional relationships between Bergmann glia and glutamate-mediated synapses in the cerebellum.

    ADS  CAS  PubMed  Google Scholar 

  27. Haber, M., Zhou, L. & Murai, K. K. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J. Neurosci. 26, 8881–8891 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishida, H. & Okabe, S. Direct astrocytic contacts regulate local maturation of dendritic spines. J. Neurosci. 27, 331–340 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Murai, K. K., Nguyen, L. N., Irie, F., Yamaguchi, Y. & Pasquale, E. B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neurosci. 6, 153–160 (2003).

    CAS  PubMed  Google Scholar 

  30. Carmona, M. A., Murai, K. K., Wang, L., Roberts, A. J. & Pasquale, E. B. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc. Natl Acad. Sci. USA 106, 12524–12529 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Filosa, A. et al. Neuron–glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nature Neurosci. 12, 1285–1292 (2009).

    CAS  PubMed  Google Scholar 

  32. Hatton, G. I. Function-related plasticity in hypothalamus. Annu. Rev. Neurosci. 20, 375–397 (1997).

    CAS  PubMed  Google Scholar 

  33. Piet, R., Poulain, D. A. & Oliet, S. H. Modulation of synaptic transmission by astrocytes in the rat supraoptic nucleus. J. Physiol. (Paris) 96, 231–236 (2002).

    CAS  Google Scholar 

  34. Fox, M. A. & Umemori, H. Seeking long-term relationship: axon and target communicate to organize synaptic differentiation. J. Neurochem. 97, 1215–1231 (2006).

    CAS  PubMed  Google Scholar 

  35. Fields, R. D. Myelination: an overlooked mechanism of synaptic plasticity? Neuroscientist 11, 528–531 (2005).

    PubMed  PubMed Central  Google Scholar 

  36. Muller, C. M. & Best, J. Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342, 427–430 (1989).

    ADS  CAS  PubMed  Google Scholar 

  37. Meyer-Franke, A., Kaplan, M. R., Pfrieger, F. W. & Barres, B. A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 (1995).

    CAS  PubMed  Google Scholar 

  38. Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro . Science 277, 1684–1687 (1997).

    CAS  PubMed  Google Scholar 

  39. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001). References 38 and 39 show that synapse formation and function are powerfully affected by astrocytes in culture. This is the first report that these processes are not only controlled by neuronal mechanisms but can also be directed by glia.

    ADS  CAS  PubMed  Google Scholar 

  40. Wu, H. et al. Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc. Natl Acad. Sci. USA 104, 13821–13826 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005). Following on from the work by Ullian and colleagues39, this paper identifies the extracellular matrix proteins TSPs as the synaptogenic factors that are released by astrocytes.

    CAS  PubMed  Google Scholar 

  42. Eroglu, C. et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009). In this study, the receptor for TSPs that is involved in synapse formation was identified to be the Ca2+ channel subunit α 2 δ-1, which is also the receptor for the commonly prescribed pain medication gabapentin.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rohrbough, J., Grotewiel, M. S., Davis, R. L. & Broadie, K. Integrin-mediated regulation of synaptic morphology, transmission, and plasticity. J. Neurosci. 20, 6868–6878 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi, Y. & Ethell, I. M. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J. Neurosci. 26, 1813–1822 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, J., Xiao, N. & Xia, J. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nature Neurosci. 13, 22–24 (2010).

    CAS  PubMed  Google Scholar 

  46. Taylor, C. P. Mechanisms of analgesia by gabapentin and pregabalin: calcium channel α2-δ [Cavα2-δ] ligands. Pain 142, 13–16 (2009).

    CAS  PubMed  Google Scholar 

  47. Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).

    ADS  CAS  PubMed  Google Scholar 

  48. Goritz, C., Mauch, D. H. & Pfrieger, F. W. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol. Cell. Neurosci. 29, 190–201 (2005).

    CAS  PubMed  Google Scholar 

  49. Elmariah, S. B., Hughes, E. G., Oh, E. J. & Balice-Gordon, R. J. Neurotrophin signaling among neurons and glia during formation of tripartite synapses. Neuron Glia Biol. 1, 1–11 (2005).

    PubMed Central  Google Scholar 

  50. Hughes, E. G., Elmariah, S. B. & Balice-Gordon, R. J. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol. Cell. Neurosci. 43, 136–145 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Feng, Z. & Ko, C. P. Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-β1. J. Neurosci. 28, 9599–9609 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cao, G. & Ko, C. P. Schwann cell-derived factors modulate synaptic activities at developing neuromuscular synapses. J. Neurosci. 27, 6712–6722 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Arber, S. & Caroni, P. Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system, promotes neurite outgrowth. J. Cell Biol. 131, 1083–1094 (1995).

    CAS  PubMed  Google Scholar 

  54. Arikkath, J. & Campbell, K. P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003).

    CAS  PubMed  Google Scholar 

  55. Barker, A. J., Koch, S. M., Reed, J., Barres, B. A. & Ullian, E. M. Developmental control of synaptic receptivity. J. Neurosci. 28, 8150–8160 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hama, H., Hara, C., Yamaguchi, K. & Miyawaki, A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41, 405–415 (2004).

    CAS  PubMed  Google Scholar 

  57. Taniguchi, H. et al. Silencing of neuroligin function by postsynaptic neurexins. J. Neurosci. 27, 2815–2824 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Garrett, A. M. & Weiner, J. A. Control of CNS synapse development by γ-protocadherin-mediated astrocyte–neuron contact. J. Neurosci. 29, 11723–11731 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Colon-Ramos, D. A., Margeta, M. A. & Shen, K. Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans . Science 318, 103–106 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bacaj, T., Tevlin, M., Lu, Y. & Shaham, S. Glia are essential for sensory organ function in C. elegans . Science 322, 744–747 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kurshan, P. T., Oztan, A. & Schwarz, T. L. Presynaptic α2δ-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nature Neurosci. 12, 1415–1423 (2009).

    CAS  PubMed  Google Scholar 

  63. Caceres, M., Suwyn, C., Maddox, M., Thomas, J. W. & Preuss, T. M. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. Cereb. Cortex 17, 2312–2321 (2007).

    PubMed  Google Scholar 

  64. Cummings, J. A., Mulkey, R. M., Nicoll, R. A. & Malenka, R. C. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825–833 (1996).

    CAS  PubMed  Google Scholar 

  65. Selig, D. K., Hjelmstad, G. O., Herron, C., Nicoll, R. A. & Malenka, R. C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15, 417–426 (1995).

    CAS  PubMed  Google Scholar 

  66. Miller, R. F. D-Serine as a glial modulator of nerve cells. Glia 47, 275–283 (2004).

    PubMed  Google Scholar 

  67. Yang, Y. et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc. Natl Acad. Sci. USA 100, 15194–15199 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Panatier, A. et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125, 775–784 (2006).

    CAS  PubMed  Google Scholar 

  69. Beattie, E. C. et al. Control of synaptic strength by glial TNFα. Science 295, 2282–2285 (2002).

    ADS  CAS  PubMed  Google Scholar 

  70. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    ADS  CAS  PubMed  Google Scholar 

  71. Buckby, L. E., Jensen, T. P., Smith, P. J. & Empson, R. M. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures. Mol. Cell. Neurosci. 31, 805–816 (2006).

    CAS  PubMed  Google Scholar 

  72. Freeman, M. R. Sculpting the nervous system: glial control of neuronal development. Curr. Opin. Neurobiol. 16, 119–125 (2006).

    CAS  PubMed  Google Scholar 

  73. Awasaki, T. & Ito, K. Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr. Biol. 14, 668–677 (2004).

    CAS  PubMed  Google Scholar 

  74. Watts, R. J., Schuldiner, O., Perrino, J., Larsen, C. & Luo, L. Glia engulf degenerating axons during developmental axon pruning. Curr. Biol. 14, 678–684 (2004). References 73 and 74 are the first reports that the pruning of axons during Drosophila metamorphosis is mediated by their active engulfment by glia.

    CAS  PubMed  Google Scholar 

  75. MacDonald, J. M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    CAS  PubMed  Google Scholar 

  76. Awasaki, T. et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867 (2006).

    CAS  PubMed  Google Scholar 

  77. Kurant, E., Axelrod, S., Leaman, D. & Gaul, U. Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133, 498–509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ziegenfuss, J. S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453, 935–939 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bishop, D. L., Misgeld, T., Walsh, M. K., Gan, W. B. & Lichtman, J. W. Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–661 (2004).

    CAS  PubMed  Google Scholar 

  80. Song, J. W. et al. Lysosomal activity associated with developmental axon pruning. J. Neurosci. 28, 8993–9001 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fuentes-Medel, Y. et al. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol. 7, e1000184 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Wu, H. H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nature Neurosci. 12, 1534–1541 (2009).

    CAS  PubMed  Google Scholar 

  83. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). This study describes an unexpected role for the complement cascade in the elimination of synapses during development and provides evidence that the expression of complement proteins is upregulated and their synaptic localization increases during the early stages of glaucoma.

    CAS  PubMed  Google Scholar 

  84. Chu, Y. et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl Acad. Sci. USA 107, 7975–7980 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alexander, J. J., Anderson, A. J., Barnum, S. R., Stevens, B. & Tenner, A. J. The complement cascade: Yin–Yang in neuroinflammation — neuro-protection and -degeneration. J. Neurochem. 107, 1169–1187 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cullheim, S. & Thams, S. The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res. Rev. 55, 89–96 (2007).

    CAS  PubMed  Google Scholar 

  87. Urade, Y., Oberdick, J., Molinar-Rode, R. & Morgan, J. I. Precerebellin is a cerebellum-specific protein with similarity to the globular domain of complement C1q B chain. Proc. Natl Acad. Sci. USA 88, 1069–1073 (1991).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iijima, T., Miura, E., Watanabe, M. & Yuzaki, M. Distinct expression of C1q-like family mRNAs in mouse brain and biochemical characterization of their encoded proteins. Eur. J. Neurosci. 31, 1606–1615 (2010).

    PubMed  Google Scholar 

  89. Matsuda, K. et al. Cbln1 is a ligand for an orphan glutamate receptor δ2, a bidirectional synapse organizer. Science 328, 363–368 (2010).

    ADS  CAS  PubMed  Google Scholar 

  90. Koch, S. M. & Ullian, E. M. Neuronal pentraxins mediate silent synapse conversion in the developing visual system. J. Neurosci. 30, 5404–5414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson, E. C. & Morrison, J. C. Friend or foe? Resolving the impact of glial responses in glaucoma. J. Glaucoma 18, 341–353 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Lin, T. N. et al. Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke 34, 177–186 (2003).

    CAS  PubMed  Google Scholar 

  93. Tran, M. D. & Neary, J. T. Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc. Natl Acad. Sci. USA 103, 9321–9326 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liauw, J. et al. Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J. Cereb. Blood Flow Metab. 28, 1722–1732 (2008).

    CAS  PubMed  Google Scholar 

  95. Li, C. Y., Song, Y. H., Higuera, E. S. & Luo, Z. D. Spinal dorsal horn calcium channel α2δ-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J. Neurosci. 24, 8494–8499 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Valder, C. R., Liu, J. J., Song, Y. H. & Luo, Z. D. Coupling gene chip analyses and rat genetic variances in identifying potential target genes that may contribute to neuropathic allodynia development. J. Neurochem. 87, 560–573 (2003).

    CAS  PubMed  Google Scholar 

  97. Oliveira, A. L. et al. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc. Natl Acad. Sci. USA 101, 17843–17848 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge all of our colleagues whose important work was not directly cited here because of space limitations. This work is referenced in the review articles cited here. C.E. is supported by the Alfred P. Sloan Foundation and a Klingenstein Fellowship Award in the Neurosciences, from the Esther A. & Joseph Klingenstein Fund.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eroglu, C., Barres, B. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010). https://doi.org/10.1038/nature09612

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09612

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing