Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The environment and schizophrenia

Abstract

Psychotic syndromes can be understood as disorders of adaptation to social context. Although heritability is often emphasized, onset is associated with environmental factors such as early life adversity, growing up in an urban environment, minority group position and cannabis use, suggesting that exposure may have an impact on the developing ‘social’ brain during sensitive periods. Therefore heritability, as an index of genetic influence, may be of limited explanatory power unless viewed in the context of interaction with social effects. Longitudinal research is needed to uncover gene–environment interplay that determines how expression of vulnerability in the general population may give rise to more severe psychopathology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complexity of the psychotic disorder phenotype in aetiological research.
Figure 2: Evidence for vulnerable subgroups and gene–environment interaction using proxy measures of genetic risk.
Figure 3: Schematic illustration of gene–environment interplay at the levels of epidemiology and biology.
Figure 4: Schematic illustration of the approximate timing of the development of the human brain, functional abilities, and impact of environmental exposures.
Figure 5: Schematic overview of neural circuits thought to be relevant in mesocorticolimbic neurotransmission and psychotic disorder, illustration of reported environmental impact on these regions and circuits in human studies, and the effect of repeated environmental exposures on the regulation of bottom-up sensory input and top-down cognitive control by the nucleus accumbens.

References

  1. McGrath, J. et al. A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med. 2, 13 (2004)Important report, bringing together a massive amount of data, summarizing the epidemiological evidence on the influences of sex, urbanicity and migrant status on the onset of schizophrenia.

    PubMed  PubMed Central  Google Scholar 

  2. Perälä, J. et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch. Gen. Psychiatry 64, 19–28 (2007)

    PubMed  Google Scholar 

  3. van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P. & Krabbendam, L. A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychol. Med. 39, 179–195 (2009)

    CAS  PubMed  Google Scholar 

  4. van Os, J. & Kapur, S. Schizophrenia. Lancet 374, 635–645 (2009)

    CAS  PubMed  Google Scholar 

  5. Cantor-Graae, E. & Selten, J. P. Schizophrenia and migration: a meta-analysis and review. Am. J. Psychiatry 162, 12–24 (2005)

    PubMed  Google Scholar 

  6. March, D. et al. Psychosis and place. Epidemiol. Rev. 30, 84–100 (2008)Systematic review on the spatial variation in the distribution of psychotic disorder, indicating an important role for social exposures.

    PubMed  Google Scholar 

  7. Krabbendam, L. & van Os, J. Schizophrenia and urbanicity: a major environmental influence–conditional on genetic risk. Schizophr. Bull. 31, 795–799 (2005)

    PubMed  Google Scholar 

  8. Kelly, B. D. et al. Schizophrenia and the city: a review of literature and prospective study of psychosis and urbanicity in Ireland. Schizophr. Res. 116, 75–89 (2010)

    PubMed  Google Scholar 

  9. Keller, M. C., Medland, S. E. & Duncan, L. E. Are extended twin family designs worth the trouble? A comparison of the bias, precision, and accuracy of parameters estimated in four twin family models. Behav. Genet. 40, 377–393 (2010)

    PubMed  Google Scholar 

  10. Hutchinson, G. et al. Morbid risk of schizophrenia in first-degree relatives of white and African-Caribbean patients with psychosis. Br. J. Psychiatry 169, 776–780 (1996)

    CAS  PubMed  Google Scholar 

  11. van Os, J., Hanssen, M., Bak, M., Bijl, R. V. & Vollebergh, W. Do urbanicity and familial liability coparticipate in causing psychosis? Am. J. Psychiatry 160, 477–482 (2003)

    PubMed  Google Scholar 

  12. van Os, J., Rutten, B. P. & Poulton, R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr. Bull. 34, 1066–1082 (2008)

    PubMed  PubMed Central  Google Scholar 

  13. Guo, S. W. Gene-environment interaction and the mapping of complex traits: some statistical models and their implications. Hum. Hered. 50, 286–303 (2000)

    CAS  PubMed  Google Scholar 

  14. Polanczyk, G. et al. Etiological and clinical features of childhood psychotic symptoms: results from a birth cohort. Arch. Gen. Psychiatry 67, 328–338 (2010)Prospective study on a very well characterized UK birth cohort, showing alterations in developmental pathways in children with expression of liability for psychotic syndrome in the form of subclinical psychotic experiences.

    PubMed  PubMed Central  Google Scholar 

  15. Kendler, K. S. et al. Sources of individual differences in depressive symptoms: analysis of two samples of twins and their families. Am. J. Psychiatry 151, 1605–1614 (1994)

    CAS  PubMed  Google Scholar 

  16. Chen, L. S., Rice, T. K., Thompson, P. A., Barch, D. M. & Csernansky, J. G. Familial aggregation of clinical and neurocognitive features in sibling pairs with and without schizophrenia. Schizophr. Res. 111, 159–166 (2009)

    PubMed  PubMed Central  Google Scholar 

  17. Toulopoulou, T. et al. Substantial genetic overlap between neurocognition and schizophrenia: genetic modeling in twin samples. Arch. Gen. Psychiatry 64, 1348–1355 (2007)

    PubMed  Google Scholar 

  18. Maric, N. et al. Is our concept of schizophrenia influenced by Berkson’s bias? Soc. Psychiatry Psychiatr. Epidemiol. 39, 600–605 (2004)

    CAS  PubMed  Google Scholar 

  19. Dominguez, M. D., Saka, M. C., Lieb, R., Wittchen, H. U. & van Os, J. Early expression of negative/disorganized symptoms predicting psychotic experiences and subsequent clinical psychosis: a 10-year study. Am. J. Psychiatry 167, 1075–1082 (2010)

    PubMed  Google Scholar 

  20. Dominguez, M. D., Wichers, M., Lieb, R., Wittchen, H. U. & van Os, J. Evidence that onset of clinical psychosis is an outcome of progressively more persistent subclinical psychotic experiences: an 8-year cohort study. Schizophr. Bull. . 10.1093/schbul/sbp022 (21 May 2009)

  21. Read, J., van Os, J., Morrison, A. P. & Ross, C. A. Childhood trauma, psychosis and schizophrenia: a literature review with theoretical and clinical implications. Acta Psychiatr. Scand. 112, 330–350 (2005)

    CAS  PubMed  Google Scholar 

  22. Bendall, S., Jackson, H. J., Hulbert, C. A. & McGorry, P. D. Childhood trauma and psychotic disorders: a systematic, critical review of the evidence. Schizophr. Bull. 34, 568–579 (2008)

    PubMed  Google Scholar 

  23. Morgan, C. & Fisher, H. Environment and schizophrenia: childhood trauma—a critical review. Schizophr. Bull. 33, 3–10 (2007)

    PubMed  Google Scholar 

  24. Schreier, A. et al. Prospective study of peer victimization in childhood and psychotic symptoms in a nonclinical population at age 12 years. Arch. Gen. Psychiatry 66, 527–536 (2009)

    PubMed  Google Scholar 

  25. Arseneault, L. et al. Childhood trauma and children’s emerging psychotic symptoms: a genetically sensitive longitudinal cohort study. Am. J. Psychiatry (in the press)

  26. Elklit, A. & Shevlin, M. Female sexual victimization predicts psychosis: a case-control study based on the Danish registry system. Schizophr. Bull. . 10.1093/schbul/sbq048 (20 May 2010)

  27. Fisher, H. L. et al. Reliability and comparability of psychosis patients’ retrospective reports of childhood abuse. Schizophr. Bull. . 10.1093/schbul/sbp103 (23 September 2009)

  28. Janssen, I. et al. Childhood abuse as a risk factor for psychotic experiences. Acta Psychiatr. Scand. 109, 38–45 (2004)

    CAS  PubMed  Google Scholar 

  29. Bourque, F., van der Ven, E. & Malla, A. A meta-analysis of the risk for psychotic disorders among first- and second-generation immigrants. Psychol. Med. . 10.1017/S0033291710001406 (21 July 2010)Recent, detailed meta-analytical analysis showing that increased risk of schizophrenia among immigrants persists into the second generation, and that this may be mediated by social context.

  30. Bresnahan, M. et al. Race and risk of schizophrenia in a US birth cohort: another example of health disparity? Int. J. Epidemiol. 36, 751–758 (2007)

    PubMed  Google Scholar 

  31. Veling, W. et al. Ethnic density of neighborhoods and incidence of psychotic disorders among immigrants. Am. J. Psychiatry 165, 66–73 (2008)

    PubMed  Google Scholar 

  32. Boydell, J. et al. Incidence of schizophrenia in ethnic minorities in London: ecological study into interactions with environment. Br. Med. J. 323, 1336 (2001)

    CAS  Google Scholar 

  33. Morgan, C., Charalambides, M., Hutchinson, G. & Murray, R. M. Migration, ethnicity, and psychosis: toward a sociodevelopmental model. Schizophr. Bull. . 10.1093/schbul/sbq051 (30 May 2010)Excellent review summarizing current evidence and future perspectives on environmental influences on psychotic disorder, particularly ethnic minority group, integrated in a novel sociodevelopmental hypothesis of psychotic disorder.

  34. Selten, J. P. & Cantor-Graae, E. Social defeat: risk factor for schizophrenia? Br. J. Psychiatry 187, 101–102 (2005)

    PubMed  Google Scholar 

  35. Mortensen, P. B., Pedersen, M. G. & Pedersen, C. B. Psychiatric family history and schizophrenia risk in Denmark: which mental disorders are relevant? Psychol. Med. 40, 201–210 (2010)

    CAS  PubMed  Google Scholar 

  36. Pedersen, C. B. & Mortensen, P. B. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch. Gen. Psychiatry 58, 1039–1046 (2001)

    CAS  PubMed  Google Scholar 

  37. van Os, J., Driessen, G., Gunther, N. & Delespaul, P. Neighbourhood variation in incidence of schizophrenia. Evidence for person-environment interaction. Br. J. Psychiatry 176, 243–248 (2000)

    CAS  PubMed  Google Scholar 

  38. Zammit, S. et al. Individuals, schools, and neighborhood: a multilevel longitudinal study of variation in incidence of psychotic disorders. Arch. Gen. Psychiatry 67, 914–922 (2010)Fascinating longitudinal study showing how individual-level risk factors may vary from protective to risk-increasing depending on the degree to which they are the norm or the exception in relation to the wider social environment.

    PubMed  Google Scholar 

  39. Morrison, P. D. et al. The acute effects of synthetic intravenous Δ9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol. Med. 39, 1607–1616 (2009)

    CAS  PubMed  Google Scholar 

  40. D’Souza, D. C. et al. Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol. Psychiatry 57, 594–608 (2005)A methodologically rigorous human experimental study on the short-term effects of delta-9-tetrahydrocannabinol (the main psychotropic component of cannabis) on cognitive and clinical phenotypes in schizophrenia.

    PubMed  Google Scholar 

  41. Minozzi, S. et al. An overview of systematic reviews on cannabis and psychosis: discussing apparently conflicting results. Drug Alcohol Rev. 29, 304–317 (2010)

    PubMed  Google Scholar 

  42. Ferdinand, R. F. et al. Cannabis use predicts future psychotic symptoms, and vice versa. Addiction 100, 612–618 (2005)

    PubMed  Google Scholar 

  43. Fergusson, D. M., Horwood, L. J. & Swain-Campbell, N. R. Cannabis dependence and psychotic symptoms in young people. Psychol. Med. 33, 15–21 (2003)

    CAS  PubMed  Google Scholar 

  44. Veling, W., Mackenbach, J. P., van Os, J. & Hoek, H. W. Cannabis use and genetic predisposition for schizophrenia: a case-control study. Psychol. Med. 38, 1251–1256 (2008)

    CAS  PubMed  Google Scholar 

  45. Genetic Risk and Outcome in Psychosis (GROUP) Investigators. Evidence that familial liability for psychosis is expressed as differential sensitivity to cannabis: an analysis of patient-sibling and sibling-control pairs. Arch. Gen. Psychiatry 10.1001/archgenpsychiatry.2010.132 (4 October 2010)

  46. van Winkel, R. Genetic Risk and Outcome in Psychosis (GROUP) Investigators. Family-based analysis of genetic variation underlying psychosis-inducing effects of cannabis: sibling analysis and proband follow-up. Arch. Gen. Psychiatry (in the press)Elegant gene–environment interaction study, combining a hypothesis-based with a more systematic approach, suggestive of interaction of cannabis with specific molecular markers of genetic variation.

  47. Di Forti, M. et al. High-potency cannabis and the risk of psychosis. Br. J. Psychiatry 195, 488–491 (2009)

    PubMed  PubMed Central  Google Scholar 

  48. Cannon, M., Jones, P. B. & Murray, R. M. Obstetric complications and schizophrenia: historical and meta-analytic review. Am. J. Psychiatry 159, 1080–1092 (2002)

    PubMed  Google Scholar 

  49. van Os, J., Pedersen, C. B. & Mortensen, P. B. Confirmation of synergy between urbanicity and familial liability in the causation of psychosis. Am. J. Psychiatry 161, 2312–2314 (2004)

    PubMed  Google Scholar 

  50. Frith, C. D. & Corcoran, R. Exploring ‘theory of mind’ in people with schizophrenia. Psychol. Med. 26, 521–530 (1996)

    CAS  PubMed  Google Scholar 

  51. Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D. & Wolpert, D. M. Evidence for sensory prediction deficits in schizophrenia. Am. J. Psychiatry 162, 2384–2386 (2005)

    PubMed  Google Scholar 

  52. Mason, O. J. & Brady, F. The psychotomimetic effects of short-term sensory deprivation. J. Nerv. Ment. Dis. 197, 783–785 (2009)

    PubMed  Google Scholar 

  53. Galdos, M. et al. Affectively salient meaning in random noise: a task sensitive to psychosis liability. Schizophr. Bull . 10.1093/schbul/sbq029 (1 April 2010)

  54. Peterson, C. C. & Siegal, M. Deafness, conversation and theory of mind. J. Child Psychol. Psychiatry 36, 459–474 (1995)

    CAS  PubMed  Google Scholar 

  55. Colvert, E. et al. Do theory of mind and executive function deficits underlie the adverse outcomes associated with profound early deprivation?: findings from the English and Romanian adoptees study. J. Abnorm. Child Psychol. 36, 1057–1068 (2008)

    PubMed  Google Scholar 

  56. David, A., Malmberg, A., Lewis, G., Brandt, L. & Allebeck, P. Are there neurological and sensory risk factors for schizophrenia? Schizophr. Res. 14, 247–251 (1995)

    CAS  PubMed  Google Scholar 

  57. Stefanis, N., Thewissen, V., Bakoula, C., van Os, J. & Myin-Germeys, I. Hearing impairment and psychosis: a replication in a cohort of young adults. Schizophr. Res. 85, 266–272 (2006)

    PubMed  Google Scholar 

  58. Malaspina, D. et al. Traumatic brain injury and schizophrenia in members of schizophrenia and bipolar disorder pedigrees. Am. J. Psychiatry 158, 440–446 (2001)

    CAS  PubMed  Google Scholar 

  59. Barkus, E. & Murray, R. M. Substance use in adolescence and psychosis: clarifying the relationship. Annu. Rev. Clin. Psychol. 6, 365–389 (2010)

    PubMed  Google Scholar 

  60. Martín-Rodríguez, J. F. & León-Carríon, J. Theory of mind deficits in patients with acquired brain injury: a quantitative review. Neuropsychologia 48, 1181–1191 (2010)

    PubMed  Google Scholar 

  61. Homer, B. D. et al. Methamphetamine abuse and impairment of social functioning: a review of the underlying neurophysiological causes and behavioral implications. Psychol. Bull. 134, 301–310 (2008)

    PubMed  Google Scholar 

  62. Fett, A. K. et al. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci. Biobehav. Rev. . 10.1016/j.neubiorev.2010.07.001 (8 July 2010)

  63. Arnsten, A. F. Stress signalling pathways that impair prefrontal cortex structure and function. Nature Rev. Neurosci. 10, 410–422 (2009)

    CAS  Google Scholar 

  64. Kaschube, M., Wolf, F., Geisel, T. & Lowel, S. Genetic influence on quantitative features of neocortical architecture. J. Neurosci. 22, 7206–7217 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Glaser, J. P., van Os, J., Portegijs, P. J. & Myin-Germeys, I. Childhood trauma and emotional reactivity to daily life stress in adult frequent attenders of general practitioners. J. Psychosom. Res. 61, 229–236 (2006)

    PubMed  Google Scholar 

  66. Wichers, M. et al. Mechanisms of gene-environment interactions in depression: evidence that genes potentiate multiple sources of adversity. Psychol. Med. 39, 1077–1086 (2009)

    CAS  PubMed  Google Scholar 

  67. Lieberman, J. A., Sheitman, B. B. & Kinon, B. J. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17, 205–229 (1997)

    CAS  PubMed  Google Scholar 

  68. Carboni, E. et al. Prenatal restraint stress: an in vivo microdialysis study on catecholamine release in the rat prefrontal cortex. Neuroscience 168, 156–166 (2010)

    CAS  PubMed  Google Scholar 

  69. Howes, O. D. & Kapur, S. The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr. Bull. 35, 549–562 (2009)

    PubMed  PubMed Central  Google Scholar 

  70. Thomas, D. Gene-environment-wide association studies: emerging approaches. Nature Rev. Genet. 11, 259–272 (2010)

    CAS  PubMed  Google Scholar 

  71. Darroch, J. Biologic synergism and parallelism. Am. J. Epidemiol. 145, 661–668 (1997)

    CAS  PubMed  Google Scholar 

  72. Caspi, A. & Moffitt, T. E. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nature Rev. Neurosci. 7, 583–590 (2006)

    CAS  Google Scholar 

  73. Schmidt-Kastner, R., van Os, J., Steinbusch, H. W. M. & Schmitz, C. Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr. Res. 84, 253–271 (2006)

    PubMed  Google Scholar 

  74. Rutten, B. P. & Mill, J. Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr. Bull. 35, 1045–1056 (2009)

    PubMed  PubMed Central  Google Scholar 

  75. Keen, D. V., Reid, F. D. & Arnone, D. Autism, ethnicity and maternal immigration. Br. J. Psychiatry 196, 274–281 (2010)

    CAS  PubMed  Google Scholar 

  76. Gardener, H., Spiegelman, D. & Buka, S. L. Prenatal risk factors for autism: comprehensive meta-analysis. Br. J. Psychiatry 195, 7–14 (2009)

    PubMed  PubMed Central  Google Scholar 

  77. Miller, B. et al. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophr, Bull . 10.1093/schbul/sbq011 (25 February 2010)

  78. McMillan, K. A., Enns, M. W., Cox, B. J. & Sareen, J. Comorbidity of axis I and II mental disorders with schizophrenia and psychotic disorders: findings from the National Epidemiologic Survey on Alcohol and Related Conditions. Can. J. Psychiatry 54, 477–486 (2009)

    PubMed  Google Scholar 

  79. Hanssen, M. et al. How psychotic are individuals with non-psychotic disorders? Soc. Psychiatry Psychiatr. Epidemiol. 38, 149–154 (2003)

    CAS  PubMed  Google Scholar 

  80. Weiser, M. et al. Cognitive performance of male adolescents is lower than controls across psychiatric disorders: a population-based study. Acta Psychiatr. Scand. 110, 471–475 (2004)

    CAS  PubMed  Google Scholar 

  81. Weiser, M. et al. Subtle cognitive dysfunction in nonaffected siblings of individuals affected by nonpsychotic disorders. Biol. Psychiatry 63, 602–608 (2008)Innovative study reporting familial clustering of cognitive dysfunction in psychiatric disorders that cuts across diagnostic psychiatric entities.

    PubMed  Google Scholar 

  82. Argyropoulos, S. V. et al. Twins discordant for schizophrenia: psychopathology of the non-schizophrenic co-twins. Acta Psychiatr. Scand. 118, 214–219 (2008)

    CAS  PubMed  Google Scholar 

  83. Goodwin, R. D., Fergusson, D. M. & Horwood, L. J. Neuroticism in adolescence and psychotic symptoms in adulthood. Psychol. Med. 33, 1089–1097 (2003)

    CAS  PubMed  Google Scholar 

  84. Rodgers, B. Behaviour and personality in childhood as predictors of adult psychiatric disorder. J. Child Psychol. Psychiatry 31, 393–414 (1990)

    CAS  PubMed  Google Scholar 

  85. Myin-Germeys, I. et al. Experience sampling research in psychopathology: opening the black box of daily life. Psychol. Med. 39, 1533–1547 (2009)

    CAS  PubMed  Google Scholar 

  86. Myin-Germeys, I., Delespaul, P. & van Os, J. Behavioural sensitization to daily life stress in psychosis. Psychol. Med. 35, 733–741 (2005)

    CAS  PubMed  Google Scholar 

  87. Wichers, M. et al. The catechol-O-methyl transferase Val158Met polymorphism and experience of reward in the flow of daily life. Neuropsychopharmacology 33, 3030–3036 (2008)

    CAS  PubMed  Google Scholar 

  88. Dreher, J. C., Kohn, P., Kolachana, B., Weinberger, D. R. & Berman, K. F. Variation in dopamine genes influences responsivity of the human reward system. Proc. Natl Acad. Sci. USA 106, 617–622 (2009)

    ADS  CAS  PubMed  Google Scholar 

  89. Weiser, M. et al. Social and cognitive functioning, urbanicity and risk for schizophrenia. Br. J. Psychiatry 191, 320–324 (2007)

    PubMed  Google Scholar 

  90. Habets, P. et al. Reduced cortical thickness as an outcome of differential sensitivity to environmental risks in schizophrenia. Biol. Psychiatry . 10.1016/j.biopsych.2010.08.010 (16 October 2010)

  91. Grace, A. A., Floresco, S. B., Goto, Y. & Lodge, D. J. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227 (2007)Comprehensive review summarizing the regulation of mesolimbic dopamine signalling in the integration of top-down cognitive control and bottom-up input.

    CAS  PubMed  Google Scholar 

  92. Mueller, S. C. et al. Early-life stress is associated with impairment in cognitive control in adolescence: an fMRI study. Neuropsychologia 48, 3037–3044 (2010)

    PubMed  PubMed Central  Google Scholar 

  93. Pruessner, J. C., Champagne, F., Meaney, M. J. & Dagher, A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J. Neurosci. 24, 2825–2831 (2004)PET imaging study showing long-term influence of parental care during early life on dopamine release in the ventral striatum under psychosocial stress in adulthood.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sheu, Y. S., Polcari, A., Anderson, C. M. & Teicher, M. H. Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions. Neuroimage 53, 412–419 (2010)

    PubMed  Google Scholar 

  95. Taylor, S. E., Eisenberger, N. I., Saxbe, D., Lehman, B. J. & Lieberman, M. D. Neural responses to emotional stimuli are associated with childhood family stress. Biol. Psychiatry 60, 296–301 (2006)

    PubMed  Google Scholar 

  96. Jager, G., Block, R. I., Luijten, M. & Ramsey, N. F. Cannabis use and memory brain function in adolescent boys: a cross-sectional multicenter functional magnetic resonance imaging study. J. Am. Acad. Child Adolesc. Psychiatry 49, 561–572 (2010)

    PubMed  PubMed Central  Google Scholar 

  97. Nestor, L., Hester, R. & Garavan, H. Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage 49, 1133–1143 (2010)

    PubMed  Google Scholar 

  98. Nestor, L., Roberts, G., Garavan, H. & Hester, R. Deficits in learning and memory: parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users. Neuroimage 40, 1328–1339 (2008)

    PubMed  Google Scholar 

  99. Yücel, M. et al. Regional brain abnormalities associated with long-term heavy cannabis use. Arch. Gen. Psychiatry 65, 694–701 (2008)

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. R. Hof, C. Morgan and M. Wichers for comments on earlier versions of this paper. Supported by the Geestkracht program of the Dutch Health Research Council (ZON-MW, grant number 10-000-1002), and the European Community's Seventh Framework Program under grant agreement No. HEALTH-F2-2009-241909 (Project EU-GEI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim van Os.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Os, J., Kenis, G. & Rutten, B. The environment and schizophrenia. Nature 468, 203–212 (2010). https://doi.org/10.1038/nature09563

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09563

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing