Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detecting excitation and magnetization of individual dopants in a semiconductor

Abstract

An individual magnetic atom doped into a semiconductor is a promising building block for bottom-up spintronic devices and quantum logic gates1,2,3. Moreover, it provides a perfect model system for the atomic-scale investigation of fundamental effects such as magnetism in dilute magnetic semiconductors4. However, dopants in semiconductors so far have not been studied by magnetically sensitive techniques with atomic resolution that correlate the atomic structure with the dopant’s magnetism. Here we show electrical excitation and read-out of a spin associated with a single magnetic dopant in a semiconductor host. We use spin-resolved scanning tunnelling spectroscopy to measure the spin excitations and the magnetization curve of individual iron surface-dopants embedded within a two-dimensional electron gas confined to an indium antimonide (110) surface. The dopants act like isolated quantum spins the states of which are governed by a substantial magnetic anisotropy that forces the spin to lie in the surface plane. This result is corroborated by our first principles calculations. The demonstrated methodology opens new routes for the investigation of sample systems that are more widely studied in the field of spintronics—that is, Mn in GaAs (ref. 5), magnetic ions in semiconductor quantum dots3, nitrogen-vacancy centres in diamond6 and phosphorus spins in silicon7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fe atoms on InSb(110).
Figure 2: Inelastic electron tunnelling spectra.
Figure 3: Spin resolved Landau level spectroscopy.
Figure 4: Landau level asymmetry as a function of the magnetic field.

Similar content being viewed by others

References

  1. Tang, J.-M., Levy, J. & Flatté, M. E. All-electrical control of single ion spins in a semiconductor. Phys. Rev. Lett. 97, 106803 (2006)

    Article  ADS  Google Scholar 

  2. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Le Gall, C. et al. Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation. Phys. Rev. Lett. 102, 127402 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Kitchen, D., Richardella, A., Tang, J.-M., Flatté, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Yakunin, A. M. et al. Warping a single Mn acceptor wavefunction by straining the GaAs host. Nature Mater. 6, 512–515 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nature Phys. 6, 249–253 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Fuechsle, M. et al. Spectroscopy of few-electron single-crystal silicon quantum dots. Nature Nanotechnol. 5, 502–505 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  ADS  Google Scholar 

  9. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Loth, S. et al. Controlling the state of quantum spins with electric currents. Nature Phys. 6, 340–344 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Balashov, T. et al. Magnetic anisotropy and magnetization dynamics of individual atoms and clusters of Fe and Co on Pt(111). Phys. Rev. Lett. 102, 257203 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Chen, X. et al. Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys. Rev. Lett. 101, 197208 (2008)

    Article  ADS  Google Scholar 

  17. Tsukahara, N. et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009)

    Article  ADS  Google Scholar 

  18. Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Wiebe, J. et al. A 300 mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution. Rev. Sci. Instrum. 75, 4871–4879 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Hashimoto, K. et al. Quantum Hall transition in real space: from localized to extended states. Phys. Rev. Lett. 101, 256802 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Mochizuki, T., Masutomi, R. & Okamoto, T. Evidence for two-dimensional spin-glass ordering in submonolayer Fe films on cleaved InAs surfaces. Phys. Rev. Lett. 101, 267204 (2008)

    Article  ADS  Google Scholar 

  22. Whitman, L. J., Stroscio, J. A., Dragoset, R. A. & Celotta, R. J. Scanning-tunneling-microscopy study of InSb(110). Phys. Rev. B 42, 7288–7291 (1990)

    Article  ADS  CAS  Google Scholar 

  23. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Fernández-Rossier, J. Theory of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009)

    Article  ADS  Google Scholar 

  25. Fransson, J. Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface. Nano Lett. 9, 2414–2417 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Persson, M. Theory of inelastic electron tunneling from a localized spin in the impulsive approximation. Phys. Rev. Lett. 103, 050801 (2009)

    Article  ADS  Google Scholar 

  27. Lorente, N. & Gauyacq, J.-P. Efficient spin transitions in inelastic electron tunneling spectroscopy. Phys. Rev. Lett. 103, 176601 (2009)

    Article  ADS  Google Scholar 

  28. Zhou, L. et al. Strength and directionality of surface Ruderman-Kittel-Kasuya-Yosida interaction mapped on the atomic scale. Nature Phys. 6, 187–191 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Harris, J. G. E. et al. Magnetization measurements of magnetic two-dimensional electron gases. Phys. Rev. Lett. 86, 4644 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

J.W. would like to thank M. Morgenstern, and S.S. would like to thank M. Karolak for discussions. A.A.K. acknowledges M. Grobis for technical discussions. We gratefully acknowledge financial support from the ERC Advanced Grant “FURORE”, by the Deutsche Forschungsgemeinschaft via the SFB668, the Graduiertenkolleg 1286 “Functional Metal-Semiconductor Hybrid Systems”, as well as by the city of Hamburg via the cluster of excellence “Nanospintronics”. All DFT calculations were done at the North-German Supercomputing Alliance (HLRN).

Author information

Authors and Affiliations

Authors

Contributions

A.A.K. and B.C. performed the experiments. A.A.K., B.C. and J.W. did the data analysis. B.C. did the modelling. S.S. did the DFT calculations. J.W., A.A.K. and B.C. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jens Wiebe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, a Supplementary Discussion, Supplementary References and Supplementary Figures 1-2 with legends. (PDF 238 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khajetoorians, A., Chilian, B., Wiebe, J. et al. Detecting excitation and magnetization of individual dopants in a semiconductor. Nature 467, 1084–1087 (2010). https://doi.org/10.1038/nature09519

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09519

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing