Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mediator and cohesin connect gene expression and chromatin architecture

A Corrigendum to this article was published on 13 April 2011

Abstract

Transcription factors control cell-specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. Here we report that mediator and cohesin physically and functionally connect the enhancers and core promoters of active genes in murine embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with cohesin, which can form rings that connect two DNA segments. The cohesin-loading factor Nipbl is associated with mediator–cohesin complexes, providing a means to load cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by mediator and cohesin. Mediator and cohesin co-occupy different promoters in different cells, thus generating cell-type-specific DNA loops linked to the gene expression program of each cell.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mediator and cohesin contribute to the ES cell state.
Figure 2: Genome-wide occupancy of mediator and cohesin in ES cells.
Figure 3: Mediator and cohesin interact.
Figure 4: Mediator and cohesin binding profiles predict enhancer–promoter looping events.
Figure 5: Cell-type-specific occupancy of mediator and cohesin.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

ChIP-Seq and microarray data have been deposited in the Gene Expression Omnibus under accession code GSE22557.

References

  1. Ptashne, M. & Gann, A. Genes and Signals 1st edn (Cold Spring Harbor Laboratory Press, 2002)

    Google Scholar 

  2. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Panne, D. The enhanceosome. Curr. Opin. Struct. Biol. 18, 236–242 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Bulger, M. & Groudine, M. Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev. Biol. 339, 250–257 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Roeder, R. G. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spring Harb. Symp. Quant. Biol. 63, 201–218 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Malik, S. & Roeder, R. G. Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256–263 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T. & Conaway, J. W. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30, 250–255 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Taatjes, D. J. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem. Sci. 35, 315–322 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vakoc, C. R. et al. Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453–462 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, H. & Peterlin, B. M. Differential chromatin looping regulates CD4 expression in immature thymocytes. Mol. Cell. Biol. 28, 907–912 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Miele, A. & Dekker, J. Long-range chromosomal interactions and gene regulation. Mol. Biosyst. 4, 1046–1057 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J. et al. Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol. 7, e1000119 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wood, A. J., Severson, A. F. & Meyer, B. J. Condensin and cohesin complexity: the expanding repertoire of functions. Nature Rev. Genet. 11, 391–404 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996)

    CAS  PubMed  Google Scholar 

  20. Okumura-Nakanishi, S., Saito, M., Niwa, H. & Ishikawa, F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J. Biol. Chem. 280, 5307–5317 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Wu, Q. et al. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J. Biol. Chem. 281, 24090–24094 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410–413 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bose, T. & Gerton, J. L. Cohesinopathies, gene expression, and chromatin organization. J. Cell Biol. 189, 201–210 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res. 20, 578–588 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tonkin, E. T., Wang, T. J., Lisgo, S., Bamshad, M. J. & Strachan, T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nature Genet. 36, 636–641 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Krantz, I. D. et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B . Nature Genet. 36, 631–635 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Toth, J. I., Datta, S., Athanikar, J. N., Freedman, L. P. & Osborne, T. F. Selective coactivator interactions in gene activation by SREBP-1a and -1c. Mol. Cell. Biol. 24, 8288–8300 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, F. et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700–704 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Ebmeier, C. C. & Taatjes, D. J. Activator-Mediator binding regulates Mediator-cofactor interactions. Proc. Natl Acad. Sci. USA 107, 11283–11288 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Ptashne, M. Gene regulation by proteins acting nearby and at a distance. Nature 322, 697–701 (1986)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Adhya, S. Multipartite genetic control elements: communication by DNA loop. Annu. Rev. Genet. 23, 227–250 (1989)

    Article  CAS  PubMed  Google Scholar 

  36. Schleif, R. DNA looping. Annu. Rev. Biochem. 61, 199–223 (1992)

    Article  CAS  PubMed  Google Scholar 

  37. Matthews, K. S. DNA looping. Microbiol. Rev. 56, 123–136 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13, 2465–2477 (1999)

    Article  CAS  PubMed  Google Scholar 

  39. Saiz, L. & Vilar, J. M. DNA looping: the consequences and its control. Curr. Opin. Struct. Biol. 16, 344–350 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Hoover, T. R., Santero, E., Porter, S. & Kustu, S. The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 63, 11–22 (1990)

    Article  CAS  PubMed  Google Scholar 

  41. Claverie-Martin, F. & Magasanik, B. Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli . Proc. Natl Acad. Sci. USA 88, 1631–1635 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luijsterburg, M. S., White, M. F., van Driel, R. & Dame, R. T. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 43, 393–418 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Taatjes, D. J., Naar, A. M., Andel, F., III, Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Philibert, R. A. & Madan, A. Role of MED12 in transcription and human behavior. Pharmacogenomics 8, 909–916 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Risheg, H. et al. A recurrent mutation in MED12 leading to R961W causes Opitz-Kaveggia syndrome. Nature Genet. 39, 451–453 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz, C. E. et al. The original Lujan syndrome family has a novel missense mutation (p.N1007S) in the MED12 gene. J. Med. Genet. 44, 472–477 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding, N. et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol. Cell 31, 347–359 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Strachan, T. Cornelia de Lange Syndrome and the link between chromosomal function, DNA repair and developmental gene regulation. Curr. Opin. Genet. Dev. 15, 258–264 (2005)

    Article  CAS  PubMed  Google Scholar 

  49. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dorsett, D. Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116, 1–13 (2007)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Lee for discussions; D. Root, S. Silver, T. Neiland and H. Le at the RNAi Screening Platform at the Broad Institute for screening advice and technical support; and J.-A. Kwon, J. Love, S. Gupta and T. Volkert for assistance with ChIP-Seq. Immunofluorescence images were collected using the W.M. Keck Foundation Biological Imagining Facility at the Whitehead Institute and Whitehead-MIT Bioimaging Center. This work was supported by Susan Whitehead and Landon and Lavinia Clay, an NIH Fellowship (M.H.K.), a Canadian Institutes of Health Research Fellowship (S.B.), the American Cancer Society (D.J.T.), a Keck Distinguished young scholar award (J.D.) and by NIH grants HG003143 (J.D.) and HG002668 (R.A.Y.).

Author information

Authors and Affiliations

Authors

Contributions

The genetic screen, ChIP-Seq, expression and immunoprecipitation experiments were conducted by M.H.K., J.J.N., S.B., P.B.R., D.A.O. and S.S.L. Mediator purification experiments were done by C.C.E., J.G and D.J.T. 3C experiments were conducted by Y.Z., N.L.v.B., M.H.K. and J.D. The manuscript was written by M.H.K., J.J.N., S.B., J.D., D.J.T. and R.A.Y.

Corresponding authors

Correspondence to Dylan J. Taatjes, Job Dekker or Richard A. Young.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a list of Supplementary Tables 1-7 (see separate files 1-7), Supplementary Figures 1-8 with legends, details for Supplementary Data (see separate files - parts 1, 2 and 3), Supplementary Experimental Procedures and References. (PDF 2037 kb)

Supplementary Table 1

This table contains Z-scores of shRNAs Used in the Screen. (XLS 1238 kb)

Supplementary Table 2

This table contains classification of Screen Hits. (XLS 12 kb)

Supplementary Table 3

This table contains Med12, Smc1a and Nipbl Knockdown Expression Data. (XLS 3830 kb)

Supplementary Table 4

This table contains Bound Genomic Regions. (XLS 34265 kb)

Supplementary Table 5

This table contains a summary of Occupied Genes. (XLS 9408 kb)

Supplementary Table 6

This table contains a summary of ChIP-Seq Data Used. (XLS 13 kb)

Supplementary Table 7

This table contains Chromosome Conformation Capture (3C) Primers. (XLS 28 kb)

Supplementary Data 1 - part 1

This file contains zipped data files, formatted (WIG.GZ) for upload into the UCSC genome browser. (ZIP 15975 kb)

Supplementary Data 1 - part 2

This file contains zipped data files, formatted (WIG.GZ) for upload into the UCSC genome browser. (ZIP 21843 kb)

Supplementary Data 1 - part 3

This file contains zipped data files, formatted (WIG.GZ) for upload into the UCSC genome browser. Due to a formatting change on the genome browser, data file mES_Smc3_min0.5.WIG.gz was replaced on 25 October 2010. (ZIP 25059 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagey, M., Newman, J., Bilodeau, S. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010). https://doi.org/10.1038/nature09380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09380

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing