Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of neutral modes in the fractional quantum Hall regime

Abstract

The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. For some particle–hole conjugate states of the fractional regime (for example, with fillings between 1/2 and 1 of the lowest Landau level), early predictions suggested the presence of counter-propagating edge currents in addition to the expected ones. When this did not agree with the measured conductance, it was suggested that disorder and interactions will lead to counter-propagating modes that carry only energy—the so called neutral modes. In addition, a neutral upstream mode (the Majorana mode) was expected for selected wavefunctions proposed for the even-denominator filling 5/2. Here we report the direct observation of counter-propagating neutral modes for fillings of 2/3, 3/5 and 5/2. The basis of our approach is that, if such modes impinge on a narrow constriction, the neutral quasiparticles will be partly reflected and fragmented into charge carriers, which can be detected through shot noise measurements. We find that the resultant shot noise is proportional to the injected current. Moreover, when we simultaneously inject a charge mode, the presence of the neutral mode was found to significantly affect the Fano factor and the temperature of the backscattered charge mode. In particular, such observations for filling 5/2 may single out the non-Abelian wavefunctions for the state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental set-up for measuring the neutral mode.
Figure 2: Detection of the neutral mode at v b = 2/3.
Figure 3: The effect of impinging the neutral mode simultaneously with the charge mode on the QPC constriction at v b = 2/3.
Figure 4: Measurements at fractional state v b = 2/5.
Figure 5: Testing for the existence of the neutral mode at v b = 3/5.
Figure 6: Testing for the existence of the neutral mode at v b = 5/2.

Similar content being viewed by others

References

  1. Das Sarma, S. & Pinczuk, A. Perspective in Quantum Hall Effects: Novel Quantum Liquid in Low-Dimensional Semiconductor Structures (Wiley, 1997)

    Google Scholar 

  2. Wen, X. G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990)

    Article  ADS  CAS  Google Scholar 

  3. MacDonald, A. H. Edge states in fractional quantum Hall effect regime. Phys. Rev. Lett. 64, 220–223 (1990)

    Article  ADS  CAS  Google Scholar 

  4. Johnson, M. D. & MacDonald, A. H. Composite edges in v = 2/3 fractional quantum Hall effect. Phys. Rev. Lett. 67, 2060–2063 (1991)

    Article  ADS  CAS  Google Scholar 

  5. Ashoori, R. C., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. Edge magnetoplasmons in time domain. Phys. Rev. B 45, 3894–3897 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Kane, C. L., Fisher, M. P. A. & Polchinski, J. Randomness at the edge: theory of quantum Hall transport at filling v = 2/3. Phys. Rev. Lett. 72, 4129–4132 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Kane, C. L. & Fisher, M. P. A. Impurity scattering and transport of fractional quantum Hall edge states. Phys. Rev. B 51, 13449–13466 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Granger, G., Eisenstein, J. P. & Reno, J. L. Observation of chiral heat transport in the quantum Hall regime. Phys. Rev. Lett. 102, 086803 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Kane, C. L. & Fisher, M. P. A. Quantized thermal transport in the fractional quantum Hall effect. Phys. Rev. B 55, 15832–15837 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Levin, M., Halperin, B. I. & Rosenow, B. Particle-hole symmetry and the Pfaffian state. Phys. Rev. Lett. 99, 236806 (2007)

    Article  ADS  Google Scholar 

  11. Lee, S.-S., Ryu, S., Nayak, C. & Fisher, M. P. A. Particle-hole symmetry at the v = 5/2 quantum Hall state. Phys. Rev. Lett. 99, 236807 (2007)

    Article  ADS  Google Scholar 

  12. Overbosch, B. J. & Chamon, C. Long tunnelling contact as a probe of fractional quantum Hall neutral edge modes. Phys. Rev. B 80, 035319 (2009)

    Article  ADS  Google Scholar 

  13. Feldman, D. E. & Li, F. Charge-statistics separation and probing non-Abelian states. Phys. Rev. B 78, 161304 (2008)

    Article  ADS  Google Scholar 

  14. Grosfeld, E. & Das, S. Probing the neutral edge modes in transport across a point contact via thermal effects in the Read-Rezayi non-abelian quantum Hall states. Phys. Rev. Lett. 102, 106403 (2009)

    Article  ADS  Google Scholar 

  15. Johnson, B. L. & Kirczenow, G. Composite fermions in quantum Hall effect. Rep. Prog. Phys. 60, 889–939 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Lopez, A. & Fradkin, E. Universal structure of the edge states of the fractional quantum Hall states. Phys. Rev. B 59, 15323–15331 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Lee, D. H. & Wen, X. G. Edge tunneling in fractional quantum Hall regime. Preprint at 〈http://arxiv.org/abs/cond-mat/9809160〉 (1998)

  18. Heiblum, M. Quantum shot noise in edge channels. Phys. Status Solidi b 243, 3604–3616 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Lesovik, G. B. Excess quantum shot noise in 2D ballistic point contacts. JETP Lett. 49, 592–594 (1989)

    ADS  Google Scholar 

  20. Kane, C. L. & Fisher, M. P. A. Nonequilibrium noise and fractional charge in the quantum Hall effect. Phys. Rev. Lett. 72, 724–727 (1994)

    Article  ADS  CAS  Google Scholar 

  21. Martin, T. & Landauer, R. Wave packet approach to noise in multichannel mesoscopic systems. Phys. Rev. B 45, 1742–1755 (1992)

    Article  ADS  CAS  Google Scholar 

  22. Dolev, M., Heiblum, M., Umansky, V., Stern, A. & Mahalu, D. Observation of a quarter of electron charge at ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Chung, Y., Heiblum, M. & Umansky, V. Scattering of bunched fractionally charged quasiparticles. Phys. Rev. Lett. 91, 216804 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Milovanovic, M. & Reed, N. Edge excitations of paired fractional quantum Hall states. Phys. Rev. B 53, 13559–13582 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Overbosch, B. J. & Wen, X. G. Phase transition on the edge of the Pfaffian and anti-Pfaffian quantum Hall state. Preprint at 〈http://arxiv.org/abs/0804.2087v1〉 (2008)

  26. Umansky, V. et al. MBE growth of ultra low disorder 2DEG with mobility exceeding 35·106cm2/V-s. J. Cryst. Growth 311, 1658–1662 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Dolev, M. et al. Unexpectedly large quasiparticles charge in the fractional quantum Hall effect. Phys. Rev. B 81, 161303(R) (2010)

    Article  ADS  Google Scholar 

  28. Bid, A., Ofek, N., Heiblum, M., Umansky, V. & Mahalu, D. Shot noise and charge at the 2/3 composite fractional quantum Hall state. Phys. Rev. Lett. 103, 236802 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Feldman, Y. Gefen, A. Stern and I. Neder for discussions and E. Alcobi for comments on the manuscript. The work received partial support from the Israeli Science Foundation (ISF), the Minerva Foundation, the German Israeli Foundation (GIF), the German Israeli Project Cooperation (DIP), the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement 227716, and the US-Israel Bi-National Science Foundation. N.O. acknowledges support from the Israeli Ministry of Science and Technology. C.L.K. acknowledges support from the NSF (DMR 0906175).

Author information

Authors and Affiliations

Authors

Contributions

A.B., N.O., H.I. and M.H. designed the experiment and wrote the paper. A.B., N.O. and H.I. performed the experiment, C.L.K. wrote the paper, V.U. grew the 2DEG and D.H. did the electron beam lithography.

Corresponding author

Correspondence to M. Heiblum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information and Supplementary Figures S1-S3 with legends. (PDF 157 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bid, A., Ofek, N., Inoue, H. et al. Observation of neutral modes in the fractional quantum Hall regime. Nature 466, 585–590 (2010). https://doi.org/10.1038/nature09277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09277

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing