Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural mechanism of C-type inactivation in K+ channels

Abstract

Interconversion between conductive and non-conductive forms of the K+ channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K+ channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels ‘trapped’ in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 Å in closed KcsA (Cα–Cα distances at Thr 112) to 32 Å when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K+ channels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of open-inactivated KcsA.
Figure 2: Conformational classes in open KcsA structures.
Figure 3: Correlation between inner gate opening and the conformation of the selectivity filter.
Figure 4: Correlation between inner gate opening and selectivity filter ion occupancy.
Figure 5: A mechanistic model of C-type inactivation at the selectivity filter.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors of KcsA-OM in the open-inactivated conformation and four additional partially open structural classes have been deposited with the Protein Data Bank under the following accession numbers: 3F5W; 3F7V; 3F7Y; 3FB6; and 3BF5.

References

  1. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Alam, A. & Jiang, Y. High-resolution structure of the open NaK channel. Nature Struct. Mol. Biol. 16, 30–34 (2009)

    Article  CAS  Google Scholar 

  6. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Ader, C. et al. Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 170–176 (2009)

    Article  CAS  Google Scholar 

  8. Baker, K. A., Tzitzilonis, C., Kwiatkowski, W., Choe, S. & Riek, R. Conformational dynamics of the KcsA potassium channel governs gating properties. Nature Struct. Mol. Biol. 14, 1089–1095 (2007)

    Article  CAS  Google Scholar 

  9. Liu, Y. S., Sompornpisut, P. & Perozo, E. Structure of the KcsA channel intracellular gate in the open state. Nature Struct. Biol. 8, 883–887 (2001)

    Article  CAS  Google Scholar 

  10. Perozo, E., Cortes, D. M. & Cuello, L. G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999)

    Article  CAS  Google Scholar 

  11. Takeuchi, K., Takahashi, H., Kawano, S. & Shimada, I. Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA. J. Biol. Chem. 282, 15179–15186 (2007)

    Article  CAS  Google Scholar 

  12. Loots, E. & Isacoff, E. Y. Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J. Gen. Physiol. 112, 377–389 (1998)

    Article  CAS  Google Scholar 

  13. Olcese, R., Latorre, R., Toro, L., Bezanilla, F. & Stefani, E. Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels. J. Gen. Physiol. 110, 579–589 (1997)

    Article  CAS  Google Scholar 

  14. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990)

    Article  ADS  CAS  Google Scholar 

  15. Choi, K. L., Aldrich, R. W. & Yellen, G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc. Natl Acad. Sci. USA 88, 5092–5095 (1991)

    Article  ADS  CAS  Google Scholar 

  16. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547–556 (1991)

    Article  CAS  Google Scholar 

  17. Kiss, L. & Korn, S. J. Modulation of C-type inactivation by K+ at the potassium channel selectivity filter. Biophys. J. 74, 1840–1849 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Kiss, L., LoTurco, J. & Korn, S. J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263 (1999)

    Article  CAS  Google Scholar 

  19. Levy, D. I. & Deutsch, C. Recovery from C-type inactivation is modulated by extracellular potassium. Biophys. J. 70, 798–805 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Molina, A., Castellano, A. G. & Lopez-Barneo, J. Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C-type inactivation. J. Physiol. (Lond.) 499, 361–367 (1997)

    Article  CAS  Google Scholar 

  21. Ogielska, E. M. & Aldrich, R. W. Functional consequences of a decreased potassium affinity in a potassium channel pore. Ion interactions and C-type inactivation. J. Gen. Physiol. 113, 347–358 (1999)

    Article  CAS  Google Scholar 

  22. Åqvist, J. & Luzhkov, V. Ion permeation mechanism of the potassium channel. Nature 404, 881–884 (2000)

    Article  ADS  Google Scholar 

  23. Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Bernèche, S. & Roux, B. Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001)

    Article  ADS  Google Scholar 

  25. Cordero-Morales, J. F. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nature Struct. Mol. Biol. 13, 311–318 (2006)

    Article  CAS  Google Scholar 

  26. Liu, Y., Jurman, M. E. & Yellen, G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867 (1996)

    Article  CAS  Google Scholar 

  27. Lopez-Barneo, J., Hoshi, T., Heinemann, S. H. & Aldrich, R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1, 61–71 (1993)

    CAS  PubMed  Google Scholar 

  28. Starkus, J. G., Kuschel, L., Rayner, M. D. & Heinemann, S. H. Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110, 539–550 (1997)

    Article  CAS  Google Scholar 

  29. Alagem, N., Yesylevskyy, S. & Reuveny, E. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels. Biophys. J. 85, 300–312 (2003)

    Article  CAS  Google Scholar 

  30. Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nature Neurosci. 4, 239–246 (2001)

    Article  CAS  Google Scholar 

  31. Proks, P., Capener, C. E., Jones, P. & Ashcroft, F. M. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118, 341–353 (2001)

    Article  CAS  Google Scholar 

  32. Cuello, L. G. et al. Design and characterization of a constitutively open KcsA. FEBS Lett. 584, 1133–1138 (2010)

    Article  CAS  Google Scholar 

  33. Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003)

    Article  CAS  Google Scholar 

  34. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Cuello, L. G. et al. Structural basis for the coupling between activation and inactivation gates in K+ channels. Nature 10.1038/nature09136 (this issue).

  36. Cuello, L. G., Cortes, D. M., Jogini, V., Sompornpisut, A. & Perozo, E. A molecular mechanism for proton-dependent gating in KcsA. FEBS Lett. 584, 1126–1132 (2010)

    Article  CAS  Google Scholar 

  37. Thompson, A. N., Posson, D. J., Parsa, P. V. & Nimigean, C. M. Molecular mechanism of pH sensing in KcsA potassium channels. Proc. Natl Acad. Sci. USA 105, 6900–6905 (2008)

    Article  ADS  CAS  Google Scholar 

  38. Panyi, G. & Deutsch, C. Cross talk between activation and slow inactivation gates of Shaker potassium channels. J. Gen. Physiol. 128, 547–559 (2006)

    Article  CAS  Google Scholar 

  39. Domene, C., Klein, M. L., Branduardi, D., Gervasio, F. L. & Parrinello, M. Conformational changes and gating at the selectivity filter of potassium channels. J. Am. Chem. Soc. 130, 9474–9480 (2008)

    Article  CAS  Google Scholar 

  40. Kurata, H. T. & Fedida, D. A structural interpretation of voltage-gated potassium channel inactivation. Prog. Biophys. Mol. Biol. 92, 185–208 (2006)

    Article  CAS  Google Scholar 

  41. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002)

    Article  ADS  CAS  Google Scholar 

  42. Yellen, G., Sodickson, D., Chen, T. Y. & Jurman, M. E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66, 1068–1075 (1994)

    Article  CAS  Google Scholar 

  43. Schlief, T., Schonherr, R. & Heinemann, S. H. Modification of C-type inactivating Shaker potassium channels by chloramine-T. Pflugers Arch. 431, 483–493 (1996)

    Article  CAS  Google Scholar 

  44. Cordero-Morales, J. F. et al. Molecular driving forces determining potassium channel slow inactivation. Nature Struct. Mol. Biol. 14, 1062–1069 (2007)

    Article  CAS  Google Scholar 

  45. Noskov, S. Y., Berneche, S. & Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004)

    Article  ADS  CAS  Google Scholar 

  46. Chakrapani, S., Cordero-Morales, J. F. & Perozo, E. A quantitative description of KcsA gating I: macroscopic currents. J. Gen. Physiol. 130, 465–478 (2007)

    Article  CAS  Google Scholar 

  47. Piskorowski, R. A. & Aldrich, R. W. Relationship between pore occupancy and gating in BK potassium channels. J. Gen. Physiol. 127, 557–576 (2006)

    Article  CAS  Google Scholar 

  48. Bezanilla, F. & Armstrong, C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 60, 588–608 (1972)

    Article  CAS  Google Scholar 

  49. Delcour, A. H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636 (1989)

    Article  CAS  Google Scholar 

  50. Perozo, E., Cortes, D. M. & Cuello, L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nature Struct. Biol. 5, 459–469 (1998)

    Article  CAS  Google Scholar 

  51. Cortes, D. M. & Perozo, E. Structural dynamics of the Streptomyces lividans K+ channel (SKC1): oligomeric stoichiometry and stability. Biochemistry 36, 10343–10352 (1997)

    Article  CAS  Google Scholar 

  52. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  53. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  54. Jones, T. A., Zou, J. Y., Cowans, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Bezanilla, B. Roux, H. Mchaourab and R. Nakamoto for discussions and comments on the manuscript. K. Locher for comments on the manuscripts. R. Mackinnon provided the Fab-expressing hybridoma cells. We also thank S. Chakrapani, J. Cordero-Morales, J. Santos, S. Uysal, O. Dalmas and the members of the Perozo laboratory for discussions and comments on the manuscript. We are thankful to K. R. Rajashankar, R. Sanishvili and the staff at the NE-CAT 24ID and GM-CA 23ID beamlines at the Advanced Photon Source, Argonne National Laboratory. This work was supported in part by NIH grant R01-GM57846 and by a gift from the Palmer family.

Author information

Authors and Affiliations

Authors

Contributions

E.P. and L.G.C. conceived the project. L.G.C. and D.M.C. generated constructs, performed biochemical analysis, expressed, purified and crystallized the proteins. L.G.C. performed electrophysiology experiments. L.G.C., V.J. and E.P. collected X-ray diffraction data. L.G.C. and V.J. determined and analysed the structures. E.P., L.G.C. and V.J. analysed the data and wrote the paper.

Corresponding author

Correspondence to Eduardo Perozo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary Figures S1-S10 and References. (PDF 3578 kb)

Supplementary Movie 1

This movie shows selectivity filter gating, top view. (MPG 2464 kb)

Supplementary Movie 2

This movie shows channel gating, bottom view. (MPG 4364 kb)

Supplementary Movie 3

This movie shows channel gating, side view. (MPG 2325 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuello, L., Jogini, V., Cortes, D. et al. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010). https://doi.org/10.1038/nature09153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09153

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing